Development of a Gene-Transfer-Resistant and Biocontained Next-Generation Bacterial Host for Controlled Drug Delivery
开发用于受控药物输送的抗基因转移和生物包容的下一代细菌宿主
基本信息
- 批准号:10784171
- 负责人:
- 金额:$ 11.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvisory CommitteesAmino AcidsAmino Acyl-tRNA SynthetasesAmmoniaAnimal ModelAutoimmune DiseasesBacteriaBacteriophagesBiological AssayBiological ProductsCell ProliferationCell SurvivalCellsChurchClinicalCodeCodon NucleotidesDevelopmentDevelopment PlansDiseaseDoseDrug Delivery SystemsDrug KineticsEngineeringEnvironmentEnzymesEscherichia coliExcretory functionFood SupplementsGastrointestinal tract structureGene ExpressionGene TransferGenerationsGenesGeneticGenetic CodeGenetic EngineeringGenetically Modified OrganismsGenomicsGoalsGrowthHalf-LifeHealthHorizontal Gene TransferHumanHuman bodyInheritedLaboratoriesLinkLyaseMalignant NeoplasmsMass Spectrum AnalysisMentorsMetabolic DiseasesMusOrganismPatientsPharmaceutical PreparationsPhasePredatory BehaviorPreventionProductionProliferatingProteomicsResearchResistanceRiskRoleSafetySense CodonSupplementationSystemTechnologyTerminator CodonTest ResultTestingTherapeuticTherapeutic UsesTrainingTransfer RNATransgenesTranslatingTyrosineTyrosinemiasUnited States National Institutes of HealthVariantViralViral GenesVirusVirus DiseasesWorkaddictionbacterial resistancecareer developmentcell growthclinical translationcolonization resistancedrug productionexperimental studyfirewallfitnessgene functiongenetic informationgut colonizationin vivomedical schoolsmicrobialmicrobial hostmicrobiomemicroorganismmouse modelnew technologynext generationnovel therapeuticspeptide drugpreventprogramsresearch and developmentsmall moleculesynthetic biologysynthetic constructtherapeutic developmenttherapeutic enzymetherapeutic genetherapeutic transgeneunnatural amino acidsviral resistancevirus host interaction
项目摘要
Project Summary/Abstract. Synthetic biology transformed our ability to rationally reprogram cells and use
such engineered living organisms, instead of small molecule drugs or biologics, as novel therapeutics.
However, living therapeutics proliferate and release their engineered genetic information into natural biomes
through horizontal gene transfer. Consequently, the widespread use of engineered living therapeutics
necessitates the development of efficient biocontainment technologies that not only prevent the unwanted
proliferation of cells but also eliminate the release of genetic information (transgenes) from such genetically
modified organisms (GMOs).
The overarching goal of my proposal is to solve these challenges and develop the first microbial host
for programmable drug delivery that simultaneously provides tight biocontainment, prevents transgene release
─ horizontal gene transfer ─ into wild organisms, and offers increased stability for long-term drug production.
The PI recently demonstrated that engineering the genetic code of living cells provides a tight, potentially
unbreakable genetic firewall that eliminates horizontal gene transfer and links the survival of cells to the
presence of small molecules not available without human supplementation. However, these early experiments
also revealed significant barriers in front of the clinical translation of this technology. This project will overcome
these barriers and generate a bacterial host for controlled drug production that prevents transgene release and
viral predation while offering strict biocontainment without escape from human therapeutic doses. This goal will
be achieved through 3 specific aims: 1) The construction of a broadly virus-resistant microbial host that
prevents transgene release by generating and characterizing multiple artificial genetic codes. 2) The creation
of a tightly biocontained microbial host that utilizes a safe, food-supplement-based genetic biocontainment
system. Finally, in Aim 3, the PI will combine these developments into a microbial living therapeutic host and
demonstrate in a proof-of-concept experiment that this host enables stable, long-term therapeutic enzyme
production inside the GI tract.
In summary, this work will create a technology and microbial host capable of addressing a wide range
of unmet needs in therapeutics development and de-risk the use of microbial GMOs for clinical translation, with
potentially broad impact on diseases ranging from autoimmune and metabolic disorders to cancer. The
proposed research and career development plan will be conducted in the lab of Dr. George M. Church at
Harvard Medical School, and the PI, Dr. Akos Nyerges, will receive extensive training in proteomics, the use of
animal models, and host-virus interaction analyses during the K99 phase from an expert advisory team. The
career development plan and the outstanding scientific environment of Harvard will enable the PI to achieve
the scientific goals of this proposal, reach scientific independence, and launch his independent research group.
项目摘要/摘要。合成生物学改变了我们合理重新编程和使用的能力
这种工程生物,而不是小分子药物或生物制剂,是新的疗法。
但是,生活疗法扩散并将其工程遗传信息释放到天然生物群落中
通过水平基因转移。因此,工程生活疗法的广泛使用
需要开发有效的生物内在技术,不仅可以阻止不必要的
细胞的扩散,但也消除了从这种遗传学上释放遗传信息(转基因)
改性生物(GMO)。
我的建议的总体目标是解决这些挑战并发展第一个微生物宿主
对于仅提供紧密生物内在的可编程药物输送,可防止变换释放
─水平基因转移 - 进入野生生物,并为长期药物生产提供了提高的稳定性。
PI最近证明,工程生物细胞的遗传密码可提供紧密的,潜在的
顽强的遗传防火墙消除了水平基因转移并将细胞的存活联系起来
如果没有人类补充,则无法提供小分子。但是,这些早期实验
还揭示了该技术的临床翻译前面的重大障碍。这个项目将克服
这些障碍并产生用于受控药物生产的细菌宿主,以防止转化释放和
病毒捕食,同时提供严格的生物疗法,而无需从人类的治疗剂量中逃脱。这个目标将
可以通过3个特定目的来实现:1)建造广泛的抗病毒的微生物宿主
通过生成和表征多个人工遗传代码来防止转化释放。 2)创作
使用安全的,基于食物的遗传生物植物的紧密生物植物的微生物宿主
系统。最后,在AIM 3中,PI将将这些发展结合到微生物生活治疗宿主中,并
在概念验证实验中证明该宿主可以实现稳定的长期治疗酶
胃肠道内的生产。
总而言之,这项工作将创建一个技术和微生物宿主,能够解决广泛的范围
在治疗开发和脱离风险中使用微生物转基因生物进行临床翻译的需求,并具有
从自身免疫和代谢疾病到癌症的疾病对疾病的潜在广泛影响。
拟议的研究和职业发展计划将在George M. Church博士的实验室进行
哈佛医学院和PI,Akos Nyerges博士将接受广泛的蛋白质组学培训
在K99阶段,动物模型和主机病毒互动分析来自专家咨询团队。这
职业发展计划和哈佛大学的杰出科学环境将使PI能够实现
该提案的科学目标,达到科学独立性并启动其独立研究小组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akos Nyerges其他文献
Akos Nyerges的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Exercise-induced Legacy Health Benefits on Cardiometabolic Risk Factors in Aging Adults with Prediabetes
运动对患有前驱糖尿病的老年人的心脏代谢危险因素的传统健康益处
- 批准号:
10353779 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Role of PPM1D and PPM1D mutations in hematopoiesis and response to stress
PPM1D 和 PPM1D 突变在造血和应激反应中的作用
- 批准号:
10678835 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Exercise-induced Legacy Health Benefits on Cardiometabolic Risk Factors in Aging Adults with Prediabetes
运动对患有前驱糖尿病的老年人的心脏代谢危险因素的传统健康益处
- 批准号:
10656111 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Role of PPM1D and PPM1D mutations in hematopoiesis and response to stress
PPM1D 和 PPM1D 突变在造血和应激反应中的作用
- 批准号:
10472614 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Methylomic and metabolomic determinants of Lung Function in Asthmatics
哮喘患者肺功能的甲基组学和代谢组学决定因素
- 批准号:
10592399 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别: