CRCNS: Computation-Enabled Adaptive Ventilatory Control System
CRCNS:计算支持的自适应通气控制系统
基本信息
- 批准号:8645093
- 负责人:
- 金额:$ 20.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-30 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:Abdominal MusclesAccountingAcuteAddressAlgorithmsAmericanAnimalsAtelectasisAtrophicBiological Neural NetworksBiological ProcessBiomechanicsBreathingCarbon DioxideCaregiversCervicalCervical spinal cord injuryChronicClinical ResearchCodeComplexComputer SimulationComputer softwareComputersCustomDevelopmentDisciplineDysbarismElectric StimulationEngineeringEnvironmental air flowEventExerciseExternal Intercostal MuscleFemaleFloridaFoundationsFrequenciesFutureGoalsHispanicsHuman ResourcesHybridsIndividualInjuryInstitutionInterdisciplinary StudyInternationalIntramuscularLeadLearningLifeLungLung diseasesManualsMechanical ventilationMechanicsMetabolicMethodsMinorityMotor NeuronsMuscleMuscle FatigueNeuronsNeurosciencesOutcomeOutputParaplegiaPatternPhysiologicalPostdoctoral FellowPrincipal InvestigatorProcessProductionPropertyQuality of lifeRecoveryRehabilitation therapyResearchResearch PersonnelRespiratory DiaphragmRespiratory MusclesRodentRodent ModelSchemeSiteSpinal cord injuryStimulusStructure of phrenic nerveStudentsSurvivorsSynapsesSystemTechnologyTestingTidal VolumeTimeTrainingTraining SupportTranslatingTranslationsUniversitiesWorkanalogbasebiological systemscomputational neurosciencecostdesigndigitalexperiencegraduate studentimprovedin vivoinnovationlimb movementmeetingsneuroregulationnovelpressurepreventprototyperesearch studyrespiratoryresponsesimulationskillstoolundergraduate student
项目摘要
DESCRIPTION (provided by applicant): Approximately 270,000 Americans and 20,000 French are survivors of traumatic spinal cord injury (SCI), with 12,000 Americans and 1200 to 2000 French surviving new injuries each year. The cervical cord is the most common site of injury (54%) and people with cervical SCI can have partial or complete loss of ventilatory control. Most people with SCI that require ventilation management are initially supported with positive pressure-mechanical ventilation, which is associated with significant discomfort, diaphragm atrophy, atelectasis and barotrauma and can lead to respiratory diseases and prevent optimal recovery. Alternatively, ventilation can be achieved by diaphragmatic pacing by electrical phrenic nerve stimulation. More recently, intramuscular stimulation of multiple respiratory muscles has been proposed as a viable less surgically invasive approach, in particular for people with insufficient ventilation by diaphragmatic pacing alone. The open-loop stimulation strategy currently utilized for pacing has major limitations including the need for manual stimulation parameter tuning, and inability to alter stimulation parameters on muscle fatigue or changing metabolic demand. The intellectual merit of this proposal lies in the design, development and prototype realization of a novel closed-loop control system that utilizes the computational power of spike-based neuromorphic hardware to adaptively control dynamic processes in biological systems. It will specifically address the challenge of simultaneously adapting the rhythm and pattern of oscillatory drive to achieve effective and efficient control of complex biological functions. The work will focus on the specific problem of controlling ventilation in individuals with high-level SCI by electrically stimulating the motoneurons that drive respiratory musculature. This problem is particularly well-suited to assess our approach because it presents the challenge of delivering a pattern of stimuli to a set of actuators at very short timescales (spike frequencies) to drive coordinated actions that determine physiological outcomes that can only be assessed on a much longer timescale (breathing frequency). Development of the proposed computation-enabled adaptive ventilatory control system (CENAVEX) will benefit from the prior experience of the US (Jung) and French (Renaud) Co-PIs and their research teams. The US team has extensive research experience in implementation of a Pattern Generator/Pattern Shaper adaptive control strategy with on-line learning for computer control of functional electrical stimulation of limb movement after incomplete or complete paraplegia in people and rodents. The French team has extensive research experience in development of analog and mixed neuromorphic VLSI and real-time hardware simulation platforms of spiking neural networks on hybrid systems interfacing living and artificial neurons. To accomplish our objectives we will develop a lung-respiratory muscles computational model and test the abilities of the CENAVEX system, implement the control scheme in software for real-time computer-based control of ventilation in anesthetized intact rodents and those with chronic cervical incomplete SCI, and implement the scheme in neuromorphic hardware with spiking networks, synaptic learning and bio-interface hardware for standalone system assessment in rodents. The broader impact of this project lies in the production of strategies and neuromorphic designs that could be useful in a number of problems in which oscillatory rhythm and pattern across a set of actuators need to be coordinated on short timescales to control complex processes with dynamics over much longer timescales. Successful completion of the proposed project will pave the path for translation to an innovative respiratory pacing system capable of allowing adequate ventilation in people with SCI with impaired respiratory control, taking into account non-linear properties of muscle activation, muscle fatigue, and metabolic demand of the individual. It will also offer ease of deployment for the clinician and caregiver. By providing long duration respiratory exercise, the system could act as a rehabilitative tool in people with incomplete SCI improving the quality of life for the user. The multidisciplinary research effort will bridge disciplines and international institutions through international exchange of personnel and ideas. Florida International University, a minority and Hispanic serving institution, will provide access to a diverse student body and the project will directly support the training of a female postdoc, young investigator, graduate and undergraduate students. The training component will build transdisciplinary expertise in neuroscience, biomechanics, rehabilitation, neuromorphic engineering and neural control systems and will provide trainees with the skills to use computational neuroscience approaches to address complex challenges faced in developing embedded neuromorphic technology.
描述(由申请人提供):大约270,000名美国人和20,000名法国人是创伤性脊髓损伤(SCI)的幸存者,每年有12,000名美国人和1200至2000年法国人幸存的新伤害。宫颈绳是最常见的损伤部位(54%),宫颈SCI患者可以部分或完全失去通气控制。大多数需要通风管理的SCI的人最初都受到正压机械通气的支持,这与明显的不适,隔膜萎缩,肺炎症和贝罗多玛有关,并可能导致呼吸道疾病并防止最佳康复。或者,通过phren型神经刺激的diaphragmmatratic节奏可以实现通风。最近,已经提出,肌肉内刺激多种呼吸道肌肉是一种可行的手术侵入性方法,特别是对于单独通过diaphragmapmatic节奏而通风不足的人。当前用于起搏的开环刺激策略具有重大局限性,包括需要手动刺激参数调整,以及无法改变肌肉疲劳或改变代谢需求的刺激参数。该提案的智力优点在于一种新型闭环控制系统的设计,开发和原型实现,该系统利用基于尖峰的神经形态硬件的计算能力来适应生物系统中的动态过程。它将特别解决同时调整振荡驱动器的节奏和模式以实现复杂生物学功能的有效控制的挑战。这项工作将集中于通过电刺激驱动呼吸肌肉的运动神经元来控制高级SCI的个体的特定问题。这个问题特别适合评估我们的方法,因为它提出了在很短的时间尺度(尖峰频率)上向一组执行器提供刺激模式的挑战,以驱动确定只能在更长的时间表(呼吸频率)上可以评估生理结果的协调行动。拟议的支持计算的自适应通气控制系统(Cenavex)的开发将受益于美国(Jung)和法国(Renaud)Co-Pis及其研究团队的先前经验。美国团队在实施模式生成器/模式塑形器自适应控制策略方面具有丰富的研究经验,并在线学习,用于在人和啮齿动物中不完整或完全瘫痪后对肢体运动的功能电气刺激的计算机控制。法国团队在模拟和混合神经形态VLSI的开发方面拥有丰富的研究经验,以及在混合系统上尖峰神经网络的实时硬件模拟平台接口生活和人工神经元。为了实现我们的目标,我们将开发一种肺部呼吸肌计算模型并测试Cenavex系统的能力,在软件中实施控制方案,以实时基于计算机的通风控制麻醉的啮齿动物,并具有慢性颈椎不完整SCI的那些和慢性颈椎不完整的SCI,并在神经型硬件中对系统进行了跨越型置换式置换式置换式置换式置换式置换式置换术。该项目的更广泛影响在于策略和神经形态设计的生产,这些设计可能在许多问题中有用,在许多问题中,在短时间内需要协调一组执行器的振荡性节奏和模式,以控制复杂的过程,以与更长的时间尺度相比,动态和动态。拟议项目的成功完成将铺平道路,以便考虑到具有肌肉激活,肌肉疲劳和个人的代谢需求的非线性特性的SCI患者的创新呼吸起搏系统。它还将为临床医生和照顾者提供便利的部署。通过提供长时间的呼吸锻炼,该系统可以充当不完整SCI患者的康复工具,从而改善了用户的生活质量。多学科的研究工作将通过国际人事和思想交流来弥合学科和国际机构。佛罗里达国际大学是少数族裔和西班牙裔服务机构,将为多元化的学生团体提供访问权限,该项目将直接支持对女性博士后,年轻研究员,研究生和本科生的培训。培训组成部分将在神经科学,生物力学,康复,神经形态工程和神经控制系统方面建立跨学科的专业知识,并将为受训者提供使用计算神经科学方法来解决开发嵌入式神经形态技术面临的复杂挑战的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ranu Jung其他文献
Ranu Jung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ranu Jung', 18)}}的其他基金
CRCNS: Computation-Enabled Adaptive Ventilatory Control System
CRCNS:计算支持的自适应通气控制系统
- 批准号:
8737323 - 财政年份:2013
- 资助金额:
$ 20.43万 - 项目类别:
Neural-Enabled Prosthesis with Sensorimotor Integration
具有感觉运动整合功能的神经假肢
- 批准号:
8122243 - 财政年份:2007
- 资助金额:
$ 20.43万 - 项目类别:
Neural-Enabled Prosthesis with Sensorimotor Integration
具有感觉运动整合功能的神经假肢
- 批准号:
7290128 - 财政年份:2007
- 资助金额:
$ 20.43万 - 项目类别:
Neural-Enabled Prosthesis with Sensorimotor Integration
具有感觉运动整合功能的神经假肢
- 批准号:
7640574 - 财政年份:2007
- 资助金额:
$ 20.43万 - 项目类别:
Neural-Enabled Prosthesis with Sensorimotor Integration
具有感觉运动整合功能的神经假肢
- 批准号:
8278198 - 财政年份:2007
- 资助金额:
$ 20.43万 - 项目类别:
Neural-Enabled Prosthesis with Sensorimotor Integration
具有感觉运动整合功能的神经假肢
- 批准号:
7502086 - 财政年份:2007
- 资助金额:
$ 20.43万 - 项目类别:
CRCNS: Modeling Neuromusculoskeletal Alterations after Spinal Cord Injury
CRCNS:脊髓损伤后神经肌肉骨骼变化建模
- 批准号:
7237156 - 财政年份:2005
- 资助金额:
$ 20.43万 - 项目类别:
PharmaScan 70/16 In-Vivo Spectroscopy/Imaging System
PharmaScan 70/16 体内光谱/成像系统
- 批准号:
6803355 - 财政年份:2005
- 资助金额:
$ 20.43万 - 项目类别:
PHARMASCAN 70/16 IN-VIVO SPECTROSCOPY/IMAGING SYSTEM: NEUROSCIENCE
PHARMASCAN 70/16 体内光谱/成像系统:神经科学
- 批准号:
7166291 - 财政年份:2005
- 资助金额:
$ 20.43万 - 项目类别:
CRCNS: Modeling Neuromusculoskeletal Alterations after Spinal Cord Injury
CRCNS:脊髓损伤后神经肌肉骨骼变化建模
- 批准号:
7109161 - 财政年份:2005
- 资助金额:
$ 20.43万 - 项目类别:
相似国自然基金
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
- 批准号:72372028
- 批准年份:2023
- 资助金额:42.00 万元
- 项目类别:面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 20.43万 - 项目类别:
Gain-of-function toxicity in alpha-1 antitrypsin deficient type 2 alveolar epithelial cells
α-1 抗胰蛋白酶缺陷型 2 型肺泡上皮细胞的功能获得毒性
- 批准号:
10751760 - 财政年份:2024
- 资助金额:
$ 20.43万 - 项目类别:
Determining medications associated with drug-induced pancreatic injury through novel pharmacoepidemiology techniques that assess causation
通过评估因果关系的新型药物流行病学技术确定与药物引起的胰腺损伤相关的药物
- 批准号:
10638247 - 财政年份:2023
- 资助金额:
$ 20.43万 - 项目类别:
A rigorous test of dual process model predictions for problematic alcohol involvement
对有问题的酒精参与的双过程模型预测的严格测试
- 批准号:
10679252 - 财政年份:2023
- 资助金额:
$ 20.43万 - 项目类别:
Role of Gastrointestinal GCPII in Visceral Pain Signaling
胃肠道 GCPII 在内脏疼痛信号传导中的作用
- 批准号:
10678103 - 财政年份:2023
- 资助金额:
$ 20.43万 - 项目类别: