CRCNS: Computation-Enabled Adaptive Ventilatory Control System
CRCNS:计算支持的自适应通气控制系统
基本信息
- 批准号:8645093
- 负责人:
- 金额:$ 20.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-30 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:Abdominal MusclesAccountingAcuteAddressAlgorithmsAmericanAnimalsAtelectasisAtrophicBiological Neural NetworksBiological ProcessBiomechanicsBreathingCarbon DioxideCaregiversCervicalCervical spinal cord injuryChronicClinical ResearchCodeComplexComputer SimulationComputer softwareComputersCustomDevelopmentDisciplineDysbarismElectric StimulationEngineeringEnvironmental air flowEventExerciseExternal Intercostal MuscleFemaleFloridaFoundationsFrequenciesFutureGoalsHispanicsHuman ResourcesHybridsIndividualInjuryInstitutionInterdisciplinary StudyInternationalIntramuscularLeadLearningLifeLungLung diseasesManualsMechanical ventilationMechanicsMetabolicMethodsMinorityMotor NeuronsMuscleMuscle FatigueNeuronsNeurosciencesOutcomeOutputParaplegiaPatternPhysiologicalPostdoctoral FellowPrincipal InvestigatorProcessProductionPropertyQuality of lifeRecoveryRehabilitation therapyResearchResearch PersonnelRespiratory DiaphragmRespiratory MusclesRodentRodent ModelSchemeSiteSpinal cord injuryStimulusStructure of phrenic nerveStudentsSurvivorsSynapsesSystemTechnologyTestingTidal VolumeTimeTrainingTraining SupportTranslatingTranslationsUniversitiesWorkanalogbasebiological systemscomputational neurosciencecostdesigndigitalexperiencegraduate studentimprovedin vivoinnovationlimb movementmeetingsneuroregulationnovelpressurepreventprototyperesearch studyrespiratoryresponsesimulationskillstoolundergraduate student
项目摘要
DESCRIPTION (provided by applicant): Approximately 270,000 Americans and 20,000 French are survivors of traumatic spinal cord injury (SCI), with 12,000 Americans and 1200 to 2000 French surviving new injuries each year. The cervical cord is the most common site of injury (54%) and people with cervical SCI can have partial or complete loss of ventilatory control. Most people with SCI that require ventilation management are initially supported with positive pressure-mechanical ventilation, which is associated with significant discomfort, diaphragm atrophy, atelectasis and barotrauma and can lead to respiratory diseases and prevent optimal recovery. Alternatively, ventilation can be achieved by diaphragmatic pacing by electrical phrenic nerve stimulation. More recently, intramuscular stimulation of multiple respiratory muscles has been proposed as a viable less surgically invasive approach, in particular for people with insufficient ventilation by diaphragmatic pacing alone. The open-loop stimulation strategy currently utilized for pacing has major limitations including the need for manual stimulation parameter tuning, and inability to alter stimulation parameters on muscle fatigue or changing metabolic demand. The intellectual merit of this proposal lies in the design, development and prototype realization of a novel closed-loop control system that utilizes the computational power of spike-based neuromorphic hardware to adaptively control dynamic processes in biological systems. It will specifically address the challenge of simultaneously adapting the rhythm and pattern of oscillatory drive to achieve effective and efficient control of complex biological functions. The work will focus on the specific problem of controlling ventilation in individuals with high-level SCI by electrically stimulating the motoneurons that drive respiratory musculature. This problem is particularly well-suited to assess our approach because it presents the challenge of delivering a pattern of stimuli to a set of actuators at very short timescales (spike frequencies) to drive coordinated actions that determine physiological outcomes that can only be assessed on a much longer timescale (breathing frequency). Development of the proposed computation-enabled adaptive ventilatory control system (CENAVEX) will benefit from the prior experience of the US (Jung) and French (Renaud) Co-PIs and their research teams. The US team has extensive research experience in implementation of a Pattern Generator/Pattern Shaper adaptive control strategy with on-line learning for computer control of functional electrical stimulation of limb movement after incomplete or complete paraplegia in people and rodents. The French team has extensive research experience in development of analog and mixed neuromorphic VLSI and real-time hardware simulation platforms of spiking neural networks on hybrid systems interfacing living and artificial neurons. To accomplish our objectives we will develop a lung-respiratory muscles computational model and test the abilities of the CENAVEX system, implement the control scheme in software for real-time computer-based control of ventilation in anesthetized intact rodents and those with chronic cervical incomplete SCI, and implement the scheme in neuromorphic hardware with spiking networks, synaptic learning and bio-interface hardware for standalone system assessment in rodents. The broader impact of this project lies in the production of strategies and neuromorphic designs that could be useful in a number of problems in which oscillatory rhythm and pattern across a set of actuators need to be coordinated on short timescales to control complex processes with dynamics over much longer timescales. Successful completion of the proposed project will pave the path for translation to an innovative respiratory pacing system capable of allowing adequate ventilation in people with SCI with impaired respiratory control, taking into account non-linear properties of muscle activation, muscle fatigue, and metabolic demand of the individual. It will also offer ease of deployment for the clinician and caregiver. By providing long duration respiratory exercise, the system could act as a rehabilitative tool in people with incomplete SCI improving the quality of life for the user. The multidisciplinary research effort will bridge disciplines and international institutions through international exchange of personnel and ideas. Florida International University, a minority and Hispanic serving institution, will provide access to a diverse student body and the project will directly support the training of a female postdoc, young investigator, graduate and undergraduate students. The training component will build transdisciplinary expertise in neuroscience, biomechanics, rehabilitation, neuromorphic engineering and neural control systems and will provide trainees with the skills to use computational neuroscience approaches to address complex challenges faced in developing embedded neuromorphic technology.
描述(由申请人提供):大约 270,000 名美国人和 20,000 名法国人是创伤性脊髓损伤 (SCI) 的幸存者,每年有 12,000 名美国人和 1200 至 2000 名法国人在新伤中幸存。颈髓是最常见的损伤部位 (54%),颈椎 SCI 患者可能会部分或完全失去通气控制。大多数需要通气管理的 SCI 患者最初都会得到正压机械通气的支持,这会导致明显的不适、膈肌萎缩、肺不张和气压伤,并可能导致呼吸系统疾病并妨碍最佳康复。或者,可以通过电膈神经刺激膈肌起搏来实现通气。最近,多呼吸肌的肌内刺激被认为是一种可行的手术侵入性较小的方法,特别是对于仅通过膈肌起搏导致通气不足的患者。目前用于起搏的开环刺激策略具有主要局限性,包括需要手动调整刺激参数,以及无法根据肌肉疲劳或改变代谢需求来改变刺激参数。该提案的智力价值在于新型闭环控制系统的设计、开发和原型实现,该系统利用基于尖峰的神经形态硬件的计算能力来自适应地控制生物系统中的动态过程。它将专门解决同时适应振荡驱动的节奏和模式以实现对复杂生物功能的有效和高效控制的挑战。这项工作将重点关注通过电刺激驱动呼吸肌肉组织的运动神经元来控制重度 SCI 患者通气的具体问题。这个问题特别适合评估我们的方法,因为它提出了在非常短的时间尺度(尖峰频率)下向一组执行器提供刺激模式以驱动协调行动的挑战,这些行动决定了只能在更长的时间尺度(呼吸频率)。拟议的计算型自适应通气控制系统(CENAVEX)的开发将受益于美国(Jung)和法国(Renaud)联合PI及其研究团队的先前经验。美国团队在实施模式生成器/模式塑造器自适应控制策略方面拥有丰富的研究经验,该策略具有在线学习功能,可用于计算机控制人类和啮齿类动物不完全或完全截瘫后肢体运动的功能性电刺激。法国团队在开发模拟和混合神经形态超大规模集成电路以及连接活体和人工神经元的混合系统上的尖峰神经网络实时硬件模拟平台方面拥有丰富的研究经验。为了实现我们的目标,我们将开发肺呼吸肌肉计算模型并测试 CENAVEX 系统的能力,在软件中实施控制方案,以对麻醉的完整啮齿动物和患有慢性颈椎不完全 SCI 的啮齿动物进行基于计算机的实时通气控制,并在具有尖峰网络、突触学习和生物接口硬件的神经形态硬件中实施该方案,用于啮齿类动物的独立系统评估。该项目更广泛的影响在于策略和神经形态设计的产生,这些策略和神经形态设计可用于解决许多问题,在这些问题中,需要在短时间内协调一组执行器的振荡节律和模式,以控制动态范围大的复杂过程。更长的时间尺度。拟议项目的成功完成将为转化为创新的呼吸起搏系统铺平道路,该系统能够为呼吸控制受损的 SCI 患者提供充分的通气,同时考虑到肌肉激活、肌肉疲劳和代谢需求的非线性特性。个人。它还将为临床医生和护理人员提供轻松部署。通过提供长时间的呼吸锻炼,该系统可以作为不完全脊髓损伤患者的康复工具,提高用户的生活质量。多学科研究工作将通过国际人员和思想交流在学科和国际机构之间架起桥梁。佛罗里达国际大学是一所少数族裔和西班牙裔服务机构,将提供多元化的学生群体,该项目将直接支持女性博士后、年轻研究员、研究生和本科生的培训。培训部分将建立神经科学、生物力学、康复、神经形态工程和神经控制系统方面的跨学科专业知识,并将为学员提供使用计算神经科学方法来解决开发嵌入式神经形态技术所面临的复杂挑战的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ranu Jung其他文献
Ranu Jung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ranu Jung', 18)}}的其他基金
CRCNS: Computation-Enabled Adaptive Ventilatory Control System
CRCNS:计算支持的自适应通气控制系统
- 批准号:
8737323 - 财政年份:2013
- 资助金额:
$ 20.43万 - 项目类别:
Neural-Enabled Prosthesis with Sensorimotor Integration
具有感觉运动整合功能的神经假肢
- 批准号:
8122243 - 财政年份:2007
- 资助金额:
$ 20.43万 - 项目类别:
Neural-Enabled Prosthesis with Sensorimotor Integration
具有感觉运动整合功能的神经假肢
- 批准号:
7290128 - 财政年份:2007
- 资助金额:
$ 20.43万 - 项目类别:
Neural-Enabled Prosthesis with Sensorimotor Integration
具有感觉运动整合功能的神经假肢
- 批准号:
7640574 - 财政年份:2007
- 资助金额:
$ 20.43万 - 项目类别:
Neural-Enabled Prosthesis with Sensorimotor Integration
具有感觉运动整合功能的神经假肢
- 批准号:
8278198 - 财政年份:2007
- 资助金额:
$ 20.43万 - 项目类别:
Neural-Enabled Prosthesis with Sensorimotor Integration
具有感觉运动整合功能的神经假肢
- 批准号:
7502086 - 财政年份:2007
- 资助金额:
$ 20.43万 - 项目类别:
CRCNS: Modeling Neuromusculoskeletal Alterations after Spinal Cord Injury
CRCNS:脊髓损伤后神经肌肉骨骼变化建模
- 批准号:
7237156 - 财政年份:2005
- 资助金额:
$ 20.43万 - 项目类别:
PharmaScan 70/16 In-Vivo Spectroscopy/Imaging System
PharmaScan 70/16 体内光谱/成像系统
- 批准号:
6803355 - 财政年份:2005
- 资助金额:
$ 20.43万 - 项目类别:
PHARMASCAN 70/16 IN-VIVO SPECTROSCOPY/IMAGING SYSTEM: NEUROSCIENCE
PHARMASCAN 70/16 体内光谱/成像系统:神经科学
- 批准号:
7166291 - 财政年份:2005
- 资助金额:
$ 20.43万 - 项目类别:
CRCNS: Modeling Neuromusculoskeletal Alterations after Spinal Cord Injury
CRCNS:脊髓损伤后神经肌肉骨骼变化建模
- 批准号:
7109161 - 财政年份:2005
- 资助金额:
$ 20.43万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 20.43万 - 项目类别:
Gain-of-function toxicity in alpha-1 antitrypsin deficient type 2 alveolar epithelial cells
α-1 抗胰蛋白酶缺陷型 2 型肺泡上皮细胞的功能获得毒性
- 批准号:
10751760 - 财政年份:2024
- 资助金额:
$ 20.43万 - 项目类别:
Identification of gene variants mediating the behavioral and physiological response to THC
鉴定介导 THC 行为和生理反应的基因变异
- 批准号:
10660808 - 财政年份:2023
- 资助金额:
$ 20.43万 - 项目类别:
Uncovering sleep and circadian mechanisms contributing to adverse metabolic health
揭示导致不良代谢健康的睡眠和昼夜节律机制
- 批准号:
10714191 - 财政年份:2023
- 资助金额:
$ 20.43万 - 项目类别: