Brain Tumor Animal Therapeutics Core
脑肿瘤动物治疗核心
基本信息
- 批准号:8763760
- 负责人:
- 金额:$ 64.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Alkylating AgentsAnimal ExperimentsAnimal ModelAnimalsAreaBehaviorBenzodiazepine ReceptorBiologicalBiological ProcessBiologyBiopsyBiotechnologyBlood - brain barrier anatomyBrainBrain NeoplasmsBreedingCC-5013Cancer cell lineCategoriesCell LineCell ProliferationCell SurvivalCellsCharacteristicsClinicClinicalClinical Drug DevelopmentClinical InvestigatorClinical TrialsClinical Trials DesignCollaborationsCommunitiesComplexConvectionCytostaticsDNADataDevelopmentDevelopmental Therapeutics ProgramDiagnosticDoseDrug Delivery SystemsDrug TargetingDrug effect disorderEducational process of instructingEvaluationExtramural ActivitiesFreezingFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGenerationsGeneticGenetic VectorsGliomaGrowthHumanImageIn VitroInstitutionIntracarotidLY317615LabelLaboratoriesLeadershipLigand BindingMagnetic Resonance ImagingMalignant GliomaMethodsMicroarray AnalysisMissionModelingMolecular ProfilingMonitorMulti-Drug ResistanceMusNational Institute of Mental HealthNational Institute of Neurological Disorders and StrokeNew AgentsOperative Surgical ProceduresPathway interactionsPatientsPatternPeripheralPermeabilityPharmaceutical PreparationsPharmacologic SubstancePhasePhase I Clinical TrialsPhase II Clinical TrialsPositron-Emission TomographyPreclinical Drug EvaluationPreparationPrivate SectorProgression-Free SurvivalsPropertyProtamine SulfateProtective AgentsProteinsRNARadiation-Sensitizing AgentsRandomizedRattusReal-Time SystemsResearchResearch DesignResearch PersonnelResistanceResourcesRoleSamplingScheduleScienceSerumSerum MarkersServicesSpecimenStem Cell FactorStem cellsSurrogate MarkersTalampanelTechnologyTestingTherapeuticTimeTissuesToxicologyTumor Cell LineTumor Stem CellsTumor TissueUnited States National Institutes of HealthWorkXenograft procedureZD-6474angiogenesisantitumor agentantitumor drugbasecancer stem cellcytotoxicdesignexpectationferumoxidesgenetic profilingglioma cell linehuman diseaseimplantationin vivoinhibitor/antagonistmouse modelneoplastic cellneuro-oncologyneurotoxicitynotch proteinnovelpre-clinicalpreclinical evaluationprogramsrelating to nervous systemrepositoryresearch studyresponsescreeningstathminsubcutaneoussuccesstumortumor progressionvasculogenesis
项目摘要
Under the leadership of Dr Fine,the NOB Lab has collaborated with pharmaceutical companies and academic institutions,and the NCI Developmental Therapeutics Program in the preclinical and clinical development of a number of new anti-glioma agents.The first step in the development pipeline is screening of the agent through the ABTC.The ABTC provides the professional service for screening these agents both in vitro and in vivo using both standard subcutaneous and stereotactic intracranial models.Since 2005,a large number of anti-glioma agents have been screened.Of those,25 new agents showed significant enough promise to warrant extended evaluation through the ABTC.These extended studies involved stereotactic-based intracranial models looking at various dose and administration schedules as well as combination trials of the new drug with other agents.Furthermore,ABTC provides experimental and technical support to other investigators both within and outside of the NOB for evaluating newly developed therapeutics.For example, the role of stem cell factor (SCF) in glioma angiogenesis; Notch-1 in glioma cell survival and proliferation;Stathmin in the resistance of malignant gliomas to DNA alkylating agents in vivo. Systemic as well as neurotoxicity (behavior) is also monitored by routine animal screening.In addition,a number of newer drug delivery technologies including intracarotid administration, delivery with or without selective or gross blood-brain barrier disruption, convection delivery, etc.have been evaluated in animal models within the ABTC.For example, the ABTC in collaboration with the SNB of NINDS and in collaboration with the private sector, has used convection-enhanced drug delivery (CED) to directly administer various genetic vectors into the brains of immundeficient animals harboring human glioma xenografts.Many of the new classes of anti-tumor therapeutics will have cytostatic rather than cytotoxic properties.Evaluating which of these agents will have biologic activity in humans in small,early clinical trials is a challenge since the standard response criteria are based on the determination of cytotoxic responses.The only truly valid clinical parameter available for evaluating the activity of a truly cytostatic agent is patient survival or tumor progression-free survival.These,however,are not useful parameters for screening drug activity in small,early phase clinical trials.Thus,if surrogate markers of biologic activity could be identified,one could utilize these as early endpoints for screening out agents with little or no clinical activity.Toward that end,the ABTC is actively working to develop surrogate markers of drug anti-tumor activity that can be utilized and validated in clinical trials,which includes three major areas:1)Imaging;2)Gene expression profiling;3) Proteinomics/Serum markers. For example, in collaboration with investigators in NOB, NINDS and the Clinical Centers program of experimental imaging science,noninvasive MR imaging has been used to image magnetically labeled endothelial progenitor cells in vivo to directly identify vasculogenesis in a glioma model.The core has provided the technical support for this project which involved the MRI tracking of in vivo Ferumoxides-Protamine Sulfate (FE-PRO) complex-labeled endothelial progenitor cells incorporating into the vasculature of established intracranial mouse gliomas.The ABTC has also successfully generated the preclinical toxicology data required by the FDA for preparation of our IND for the clinical trial of using ferrodex-labeled endothelial progenitor cells as MRI trackable markers of angiogenesis in patients with gliomas.Additionally,we have collaborated with Dr. Robert Innis(NIMH)for attempting to adapt PET scanning into a monitoring system for real time imaging of drug permeability through the BBB and following the administration of inhibitors of the multiple drug resistance (MDR) protein.This work is being extended to use the ABTC tohelp evaluate novel PET ligands that bind to the peripheral benzodiazepine receptors (PBR) which is highly overexpresed in gliomas.A major effort of the core is to generate the RNA for gene expression profiles using microarray technology from given glioma cell lines treated with a specific class of agents.If characteristic patterns could be identified that correspond with anti-tumor activity,then clinical trials can/will be devised to administer one of these agents to patients with brain tumors immediately prior to biopsy/surgery in order to attempt and identify a similar genetic profile clinically.In collaboration with the NOB Lab and the GMDI team,gene expression signatures are being generated in all of glioma cell lines and GIC/GSCs for all compounds tested within the ABTC.Finally,the ABTC stores representative tumor, tissue and serum samples from animals treated with each new compound tested with the expectations that new candidate tissue and/or serum-based protein markers of drug activity, tumor activity and/or some tumor biological process(i.e. angiogenesis)may be found.This will be an invaluable preclinical resource for validating such claims in the future.A major effort of the NOB is to develop human glioma cell lines that more closely model primary human gliomas both biologically and molecularly.The ABTC is actively involved in the generation of primary human glioma cell lines and GIC/GSC lines from fresh surgical specimens for every glioma patient operated on at the NIH.The ABTC staff works closely with the cancer stem cell biologists in the Fine laboratory for the growth, propagation and characterization of each of these cell lines and animal xenografts. The ABTC uses these well-characterized cell lines as screens for two major categories of drugs;1)The most promising of the drugs that have made it through the first levels of in vitro and in vivo screens using the more conventional established glioma cell lines;2)drugs that target pathways that may not be well represented by the biology of standard glioma cell lines but are reproduced in the GIC/GSCs.The cores expertise with these cells, and the large resources of different GIC/GSC lines, are a potent enticement for potential partnerships between NCI and the pharmaceutical/biotechnology community given their growing appreciation of the limitation of standard cancer cell lines and the promise of cancer stem cells for better representing the human disease.Finally, given the hundreds of requests we receive each year for these valuable GIC/GSC lines,the ABTC serves a vital function as the group designated to expand,freeze and distribute various cell lines to investigators both within and outside of the NIH.In doing so,the staff of the ABTC spends a significant amount of time teaching other investigators from within and outside of the NIH how to grow GIC/GSCs and how to perform stereotactic implantation of tumor cells into mice and rats.Evidence of the success of the ABTC is the fact that we have activated 11 clinical trials as a direct result of translational work performed within the NOB,all of which had preclinical animal studies performed within the ABTC.Even more to the point,we have identified 12 compounds solely through the ABTC preclinical screening program that have since been brought forward to clinical trials at the NIH (AZD6918,RO4929097,AZD8005,MLN-518, ZD6474,LY317615,sunitinib,CC5013,Talampanel).The potential power of the ABTC is well documented by our demonstration of being able to take an agent sent to us for preclinical evaluation by one of our pharmaceutical collaborators and generate preclinical data supportive of clinical trials that resulted in NOB sponsored (two) phase I trials,(two)phase II trials and a NOB-chaired phase III worldwide randomized registration clinical trial; all the while discovering a novel mechanism of action of the drug (GSK3 inhibition).
在Fine博士的领导下,NOB实验室与制药公司、学术机构以及NCI开发治疗项目合作,进行了多种新型抗神经胶质瘤药物的临床前和临床开发。开发管线的第一步是筛选通过ABTC对药物进行筛选。ABTC提供使用标准皮下和立体定向颅内模型进行体外和体内筛选这些药物的专业服务。自2005年以来,大量抗神经胶质瘤药物其中,25 种新药显示出足够的前景,值得通过 ABTC 进行扩展评估。这些扩展研究涉及基于立体定向的颅内模型,着眼于各种剂量和给药方案以及新药与其他药物的联合试验此外,ABTC为NOB内外的其他研究人员提供实验和技术支持,以评估新开发的治疗方法。例如,干细胞因子(SCF)在胶质瘤血管生成中的作用; Notch-1在神经胶质瘤细胞存活和增殖中的作用;Stathmin在恶性神经胶质瘤对体内DNA烷化剂的抵抗中的作用。系统毒性和神经毒性(行为)也通过常规动物筛选进行监测。此外,许多较新的药物递送技术,包括颈动脉内给药、选择性或总体血脑屏障破坏或不破坏的递送、对流递送等已经被开发出来。例如,ABTC 与 NINDS 的 SNB 合作,并与私营部门合作,使用对流增强药物输送 (CED) 直接施用各种遗传载体进入携带人类神经胶质瘤异种移植物的免疫缺陷动物的大脑中。许多新型抗肿瘤疗法将具有细胞抑制特性,而不是细胞毒性特性。在小型早期临床试验中评估这些药物中哪些在人体中具有生物活性是一个挑战,因为标准反应标准基于细胞毒性反应的测定。可用于评估真正细胞抑制剂活性的唯一真正有效的临床参数是患者存活或肿瘤无进展然而,这些并不是在小型早期临床试验中筛选药物活性的有用参数。因此,如果可以确定生物活性的替代标记,则可以利用这些作为早期终点来筛选很少或没有临床试验的药物。为此,ABTC正在积极致力于开发可在临床试验中利用和验证的药物抗肿瘤活性的替代标志物,其中包括三个主要领域:1)成像;2)基因表达谱;3)蛋白质组学/血清标记。例如,与 NOB、NINDS 和实验成像科学临床中心项目的研究人员合作,无创 MR 成像已用于对体内磁性标记的内皮祖细胞进行成像,以直接识别神经胶质瘤模型中的血管生成。该项目的技术支持涉及体内铁氧化物-鱼精蛋白硫酸盐 (FE-PRO) 复合物标记的内皮祖细胞的 MRI 跟踪,并纳入ABTC 还成功生成了 FDA 所需的临床前毒理学数据,用于准备我们的 IND,用于使用 Ferrodex 标记的内皮祖细胞作为神经胶质瘤患者血管生成的 MRI 可追踪标记物的临床试验。 ,我们与 Robert Innis 博士(NIMH)合作,尝试将 PET 扫描纳入监测系统,通过BBB 并在施用多重耐药 (MDR) 蛋白抑制剂后。这项工作正在扩展到使用 ABTC 来帮助评估与外周苯二氮卓受体 (PBR) 结合的新型 PET 配体,该受体在神经胶质瘤中高度过度表达。核心工作是使用微阵列技术从用特定类别药物处理的给定神经胶质瘤细胞系中生成基因表达谱的 RNA。如果可以识别出与抗肿瘤活性相对应的特征模式,那么可以/将设计临床试验,在活检/手术前立即向脑肿瘤患者施用其中一种药物,以尝试在临床上识别相似的基因图谱。与 NOB 实验室和 GMDI 团队合作,研究基因表达特征在 ABTC 中测试的所有化合物的所有神经胶质瘤细胞系和 GIC/GSC 中都会生成。最后,ABTC 存储来自用每种测试的新化合物治疗的动物的代表性肿瘤、组织和血清样本,并期望新的候选组织和/或基于血清的药物活性、肿瘤活性和/或某些肿瘤生物学过程(即,血管生成)可能会被发现。这将是未来验证此类主张的宝贵临床前资源。NOB 的一项主要工作是开发人类神经胶质瘤细胞系,在生物学和分子方面更接近地模拟原发性人类神经胶质瘤。ABTC 正在积极参与从 NIH 接受手术的每位神经胶质瘤患者的新鲜手术标本中生成原代人类神经胶质瘤细胞系和 GIC/GSC 系。ABTC 工作人员与癌症干细胞密切合作Fine 实验室的生物学家负责这些细胞系和动物异种移植物的生长、繁殖和表征。 ABTC 使用这些充分表征的细胞系来筛选两大类药物;1) 使用更传统的已建立的神经胶质瘤细胞系通过第一级体外和体内筛选的最有前途的药物; 2)针对标准神经胶质瘤细胞系的生物学特性可能无法很好地代表但在 GIC/GSC 中复制的途径的药物。这些细胞的核心专业知识以及不同 GIC/GSC 系的大量资源是鉴于 NCI 和制药/生物技术界越来越认识到标准癌细胞系的局限性以及癌症干细胞更好地代表人类疾病的前景,这对 NCI 和制药/生物技术界之间的潜在合作伙伴关系具有强大的吸引力。最后,考虑到我们每年收到的数百个请求对于这些有价值的 GIC/GSC 系,ABTC 发挥着至关重要的作用,作为指定扩大、冷冻和分发各种细胞系给 NIH 内外的研究人员的小组。在这样做时,ABTC 的工作人员花费了大量资金教学时间NIH 内外的其他研究人员如何培养 GIC/GSC 以及如何将肿瘤细胞立体定向植入小鼠和大鼠中。 ABTC 成功的证据是我们已经启动了 11 项临床试验作为直接结果NOB 内进行的转化工作,所有这些工作均在 ABTC 内进行了临床前动物研究。更重要的是,我们仅通过 ABTC 临床前筛选计划就鉴定出了 12 种化合物,这些化合物此后已被被提交到 NIH 进行临床试验(AZD6918、RO4929097、AZD8005、MLN-518、ZD6474、LY317615、sunitinib、CC5013、Talampanel)。ABTC 的潜在威力通过我们能够接受发送的药物的演示得到了充分证明。由我们的一位制药合作者进行临床前评估,并生成支持的临床前数据导致 NOB 赞助的(两项)I 期试验、(两项)II 期试验和一项 NOB 主持的 III 期全球随机注册临床试验的临床试验;同时发现该药物的新作用机制(GSK3 抑制)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Howard Fine其他文献
Howard Fine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Howard Fine', 18)}}的其他基金
Canine Glioma and Embryonic Neural Stem Cell Project
犬神经胶质瘤和胚胎神经干细胞项目
- 批准号:
8552977 - 财政年份:
- 资助金额:
$ 64.87万 - 项目类别:
Exploring the Therapeutic Potential of Stem Cell Biology in Gliomas
探索干细胞生物学在神经胶质瘤中的治疗潜力
- 批准号:
7965746 - 财政年份:
- 资助金额:
$ 64.87万 - 项目类别:
SCF as a Novel CNS and Glioma-Derived Angiogenic Factor and SC Chemotaxic Factor
SCF 作为一种新型 CNS 和神经胶质瘤衍生的血管生成因子和 SC 趋化因子
- 批准号:
7966056 - 财政年份:
- 资助金额:
$ 64.87万 - 项目类别:
The Role of miRNAs in Glioma Stem Cell and Glioma Biology
miRNA 在神经胶质瘤干细胞和神经胶质瘤生物学中的作用
- 批准号:
7966059 - 财政年份:
- 资助金额:
$ 64.87万 - 项目类别:
The Pre-clinical and Clinical Development of Novel Molecularly Target
新型分子靶点的临床前和临床开发
- 批准号:
7592987 - 财政年份:
- 资助金额:
$ 64.87万 - 项目类别:
Exploring the Therapeutic Potential of Stem Cell Biology in Gliomas
探索干细胞生物学在神经胶质瘤中的治疗潜力
- 批准号:
8157495 - 财政年份:
- 资助金额:
$ 64.87万 - 项目类别:
The Role of miRNAs in Glioma Stem Cell and Glioma Biology
miRNA 在神经胶质瘤干细胞和神经胶质瘤生物学中的作用
- 批准号:
8349327 - 财政年份:
- 资助金额:
$ 64.87万 - 项目类别:
Elucidation and Exploitation of GSK3 as a Novel Glioma Therapeutic Target
GSK3 作为新型神经胶质瘤治疗靶点的阐明和开发
- 批准号:
8552857 - 财政年份:
- 资助金额:
$ 64.87万 - 项目类别:
相似国自然基金
构建环状RNA调控肝癌干细胞干性维持的实验动物模型及机制研究
- 批准号:32070533
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
大鼠创伤性颞下颌关节强直实验动物模型的构建及发生机制研究
- 批准号:81970954
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
髌骨脱位后股骨滑车发育不良的实验动物模型研究
- 批准号:81873983
- 批准年份:2018
- 资助金额:75.0 万元
- 项目类别:面上项目
舒张性心衰(HFpEF)的动物模型:机理研究和实验治疗
- 批准号:81770265
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
基于双靶分子识别的Dox调控的增强型IL13 CAR-T在恶性脑胶质瘤动物模型中的实验治疗研究
- 批准号:81773265
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
NF-kB1-p50 in the response to DNA alkylation damage
NF-kB1-p50 对 DNA 烷基化损伤的反应
- 批准号:
8282991 - 财政年份:2009
- 资助金额:
$ 64.87万 - 项目类别:
NF-kB1-p50 in the response to DNA alkylation damage
NF-kB1-p50 对 DNA 烷基化损伤的反应
- 批准号:
8473054 - 财政年份:2009
- 资助金额:
$ 64.87万 - 项目类别:
NF-kB1-p50 in the response to DNA alkylation damage
NF-kB1-p50 对 DNA 烷基化损伤的反应
- 批准号:
7736451 - 财政年份:2009
- 资助金额:
$ 64.87万 - 项目类别:
NF-kB1-p50 in the response to DNA alkylation damage
NF-kB1-p50 对 DNA 烷基化损伤的反应
- 批准号:
8082754 - 财政年份:2009
- 资助金额:
$ 64.87万 - 项目类别:
Neurobiological Mechanisms of Drug Reinforcement
药物强化的神经生物学机制
- 批准号:
7491590 - 财政年份:1990
- 资助金额:
$ 64.87万 - 项目类别: