Canine Glioma and Embryonic Neural Stem Cell Project
犬神经胶质瘤和胚胎神经干细胞项目
基本信息
- 批准号:8552977
- 负责人:
- 金额:$ 63.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:10q10q21-q2210q21.19p21-p22AdultAnimalsApoptosisApoptosis RegulatorAreaAutomobile DrivingBMPR1A geneBeliefBiologyBostonBrain NeoplasmsBreast Cancer CellBreedingCDKN2A geneCanis familiarisCell CycleCell Cycle RegulationCell ProliferationCellsChromosomal DuplicationChromosome DeletionChromosomesColon CarcinomaCuesCyclic GMPDatabasesEmbryoEmployee StrikesEpidermal Growth Factor ReceptorEventExhibitsFailureGene TargetingGenesGeneticGenomeGenomicsGlial DifferentiationGlioblastomaGliomaGliomagenesisGrowthGrowth FactorHistopathologic GradeHumanHuman GenomeIFNAR1 geneIncidenceIndividualInduction of ApoptosisInterferonsInvestigationLaboratoriesLinkMDM2 geneMalignant - descriptorMalignant GliomaMalignant NeoplasmsMapsModelingMolecular BiologyNeoplasmsNeoplastic Cell TransformationNeurogliaNeuronal DifferentiationNeuronsNormal CellOncogenesPRKG2 genePTEN genePathologicPathway AnalysisPathway interactionsPatientsPhenotypePhosphotransferasesPhysiologicalPopulationPredispositionPregnancyReceptor InhibitionReceptor SignalingRefractoryRegulatory PathwayReportingRoleSamplingSecondary toSeriesSignal TransductionSyntenic ConservationThe Cancer Genome AtlasTrisomyTumor Cell InvasionTumor Stem CellsTumor Suppressor GenesTumor Suppressor ProteinsTumor-DerivedTumorigenicityXenograft procedureangiogenesisembryonic stem cellgenetic regulatory proteinimprovedinsightinterestneoplastic cellnerve stem cellnoveloncologypredictive modelingpreventprogenitorsmoothened signaling pathwaytranscription factortumortumor xenografttumorigenesistumorigenicvasodilator-stimulated phosphoprotein
项目摘要
The domestic dog represents the only model which allows all of these facets to be studied within the same species, and in respect to glioma TICs and adult NSCs, syngeneic samples from the same individual. As the ability to interrogate the canine genome increases, the clearly defined breed predispositions in regard to canine gliomagenesis may elucidate biologically relevant genomic alterations found in human glioma, enhancing our ability to classify this heterogeneous neoplasm by molecular biology, which may greatly improve our understanding over traditional pathologic grading schema.In order to more completely define minimal regions of alteration within large chromosomal amplifications or deletions often found in human glioblastoma, we identified regions of shared CNAs (between human GBMs and canine GSCs) and mapped these regions to the corresponding canine chromosomes. PTEN (located on HSA 10q.23.3) is usually deleted along with large segments of HSA 10q in human glioblastom. A long-standing question in glioma genetics is whether the target of HSA 10q deletion is PTEN alone or whether there are additional target genes that are co-deleted with PTEN that contribute to the tumorigenic phenotype.In the dog, PTEN is located at the telomeric end of CFA 26, which was deleted in the GSCs derived from the secondary and tertiary xenografts. Genes co-deleted in our canine GSCs alongside PTEN in CFA 26 included Dkk1, which functions to inhibit Wnt signaling and may function to inhibit differentiation potential or clonogenic growth potential. Additionally, cyclic guanosine monophosphate (cGMP)-dependent kinase (PRKG1) was also co-deleted with PTEN in the canine tertiary tumors and, alongside PRKG2, has been suggested to be potential tumor suppressor genes in colon carcinoma and glioma. PRKG1 also functions to inhibit angiogenesis through vasodilator-stimulated phosphoprotein (VASP). Thus, the deletion PRKG1 in both canine and human GSCs may have a mechanistic role in the aberrant cell cycle control and angiogenic phenotype of malignant gliomas.In addition to the deletions in CFA 26 containing PTEN (HSA 10q 89.2-90.9Mb), the canine tertiary xenograft tumors also exhibit an expanded deletion in CFA 4 that is syntenic to areas of HSA 10 that flank the PTEN loci and are often deleted in human GBMs (HSA 10q, 59.6-88.7 and 91-91.16Mb). Therefore, while the secondary and tertiary canine GSCs exhibit loss at CFA 26 corresponding to PTEN, progression of xenograft malignancy in our canine GSC population is associated with an additional, separate chromosomal deletion of CFA 4 that contains a syntenic region in immediate proximity to PTEN on the human genome. We examined genes present within this co-deleted segment of CFA 4 corresponding to HSA 10 and identified several genes within this region that have suspected roles in gliomagenesis. ANXA7 (located on HSA 10q21.1-q21.2), which is frequently deleted in human GBMs, has been previously suggested as a tumor suppressor gene independent of its human chromosomal proximity to PTEN. It has been hypothesized that loss of ANXA7 stabilizes and thus augments EGFR signaling and is negatively associated with patient survival. The loss of ANXA7 secondary to deletion of CFA 4, and separate from that containing PTEN (CFA 26), in canine gliomas supports an independent and important role for both genes as potential tumor suppressors in GBMs and demonstrates the power of the dog as a predictive model for interrogating the glioma genome. Additional genes co-deleted within CFA 4 and corresponding to the syntenic regions of HSA 10q involve other tumor suppressor gene candidates including BMPR1A, and CCAR1. We, and others have shown that disruptions in BMP signaling may impact the tumorigenic potential and capacity for differentiation in GSCs, and BMPR1A deletions are known to predispose individuals to colon cancer formation. CCAR1, or cell cycle and apoptosis regulator 1 (also referred to as cell cycle and apoptosis regulatory protein 1 or CARP-1) is located on HSA 10q21-q22 and has been reported to suppress the clonogenic growth, tumorigenicity, and invasion of human breast cancer cells and is integral to the induction of apoptosis following EGFR inhibition. Loss of CCAR1 may explain in part the failure of some patients to respond to EGFR inhibition therapeutically or enable tumor cells to survive in conditions of low growth factor concentration.We performed similar analyses on the other commonly altered genomic foci shared between our canine GSCs and human GBMs. The canine GSC genomic deletion containing CDK2NA is evolutionarily related to a very small region of HSA 9p21-p22, highlighting the importance of CDKN2A in glioma biology and diminishing the potential importance of a large number of other genes (passenger genes) that are co-deleted in the large CNAs found in HSA 9. Indeed, the canine chromosomal regions flanking the small locus containing CDKN2A are amplified, suggesting a specific role of CDKN2A deletion in glioma biology while potentially excluding a number of linked co-deleted genes in HSA 9. Within that minimally deleted region containing the p16/Ink4a locus in our canine GSCs are several interferon genes (IFNB1, IFNA5, IFNA13, and IFNA7) that are also deleted. This may be of interest for the IFNAR1 gene was recently identified by Cerami et al. as a linker gene in the PIK3R1 module through an automated network analysis (Human Interaction Network). This module, linking several IFNA genes and IFNB1 to IFNAR1, was found altered in 25% of GBMs in the TCGA database, but as the authors express, was of unknown significance due to the close proximity of IFN genes to CDKN2A. The co-deletion of CDKN2A and the IFNAR1 gene in both canine and human gliomas strengthens the argument that IFNAR1 is a potentially significant gene in the biology of GBMs.An additional chromosomal amplification associated with the more malignant xenograft gliomas is seen in CFA 6, which shares evolutionarily conserved synteny with HSA 7. This is of particular interest since trisomy HSA 7 is a common finding in GBMs. This region contains the gene, Glioblastoma Amplified Sequence (GBAS), which has been reported to be amplified in up to 40% of human GBMs. Other commonly altered foci in human GBMs show striking conservation in our canine GSCs including those surrounding amplification of MDM4, MDM2, and in the genomic regions commonly deleted in HSA 6 and 13. A number of these CNAs that are conserved across both species contain well-known potential tumor suppressor or oncogenes. One such example is Gli1, a transcription factor involved in the transduction of sonic hedgehog signaling and that may have a role in the promotion of tumor cell invasion. The Gli1 gene (HSA 12q13.2-13.3) is amplified both in a subset of human GBMs as well as in our canine glioma (CFA 10). By contrast, it is of interest that amplification of the epidermal growth factor receptor (EGFR) seen in primary human GBMs was not seen in our canine tertiary tumors, consistent with its lack of amplification in secondary human GBMs. Thus, these foci of shared genomic alterations allow us to identify a series of genomic events responsible for driving both human and canine gliomagenesis with more certainty than would be possible through the genomic study of gliomas from only one species.
家养狗是唯一允许在同一物种内研究所有这些方面的模型,并且就神经胶质瘤 TIC 和成人 NSC 而言,来自同一个体的同基因样本。随着研究犬基因组的能力不断增强,关于犬神经胶质瘤发生的明确品种倾向可能会阐明人类神经胶质瘤中发现的生物学相关的基因组改变,从而增强我们通过分子生物学对这种异质性肿瘤进行分类的能力,这可能会极大地提高我们对神经胶质瘤的理解。传统的病理分级方案。为了更完整地定义人类胶质母细胞瘤中常见的大染色体扩增或缺失中的最小改变区域,我们确定了共享 CNA 的区域(人类之间) GBM 和犬 GSC)并将这些区域映射到相应的犬染色体。在人胶质母细胞瘤中,PTEN(位于 HSA 10q.23.3)通常与 HSA 10q 的大片段一起被删除。 神经胶质瘤遗传学中一个长期存在的问题是,HSA 10q 缺失的靶标是否是单独的 PTEN,或者是否存在与 PTEN 共同缺失的其他靶基因,这些基因有助于致瘤表型。在狗中,PTEN 位于端粒CFA 26 的末端,在源自二级和三级异种移植物的 GSC 中被删除。在我们的犬 GSC 中与 CFA 26 中的 PTEN 共同删除的基因包括 Dkk1,其功能是抑制 Wnt 信号传导,并可能起到抑制分化潜力或克隆生长潜力的作用。此外,环鸟苷单磷酸 (cGMP) 依赖性激酶 (PRKG1) 也在犬三级肿瘤中与 PTEN 共同缺失,并且与 PRKG2 一起被认为是结肠癌和神经胶质瘤中潜在的肿瘤抑制基因。 PRKG1 还可以通过血管舒张刺激磷蛋白 (VASP) 抑制血管生成。因此,犬和人类 GSC 中的 PRKG1 缺失可能在恶性神经胶质瘤的异常细胞周期控制和血管生成表型中具有机制作用。 除了含有 PTEN (HSA 10q 89.2-90.9Mb) 的 CFA 26 中的缺失之外,犬科动物三级异种移植肿瘤还表现出 CFA 4 的扩大缺失,与 HSA 区域同线10 位于 PTEN 位点侧翼,在人类 GBM 中经常被删除(HSA 10q、59.6-88.7 和 91-91.16Mb)。因此,虽然二级和三级犬 GSC 在与 PTEN 相对应的 CFA 26 处表现出缺失,但我们的犬 GSC 群体中异种移植恶性肿瘤的进展与 CFA 4 的额外、单独的染色体缺失有关,CFA 4 包含紧邻 PTEN 的同线区域。人类基因组。我们检查了对应于 HSA 10 的 CFA 4 共缺失片段中存在的基因,并鉴定了该区域内的几个基因,这些基因在神经胶质瘤发生中具有可疑的作用。 ANXA7(位于 HSA 10q21.1-q21.2)在人类 GBM 中经常被删除,之前已被认为是一种肿瘤抑制基因,与其与 PTEN 的人类染色体接近程度无关。 据推测,ANXA7 的缺失会稳定并从而增强 EGFR 信号传导,并与患者生存呈负相关。在犬神经胶质瘤中,ANXA7 的缺失继发于 CFA 4 的缺失,并与含有 PTEN (CFA 26) 的基因分开,支持这两个基因作为 GBM 中潜在肿瘤抑制因子的独立且重要的作用,并证明了狗作为预测肿瘤的能力。用于询问神经胶质瘤基因组的模型。 CFA 4 内共同删除并对应于 HSA 10q 同线性区域的其他基因涉及其他候选肿瘤抑制基因,包括 BMPR1A 和 CCAR1。我们和其他人已经证明,BMP 信号传导的破坏可能会影响 GSC 的致瘤潜力和分化能力,并且已知 BMPR1A 缺失会使个体容易形成结肠癌。 CCAR1,或细胞周期和凋亡调节蛋白 1(也称为细胞周期和凋亡调节蛋白 1 或 CARP-1)位于 HSA 10q21-q22 上,据报道可抑制人乳腺的克隆生长、致瘤性和侵袭。癌细胞,并且是 EGFR 抑制后诱导细胞凋亡的组成部分。 CCAR1 的缺失可能部分解释了一些患者未能对 EGFR 抑制治疗作出反应或使肿瘤细胞无法在低生长因子浓度的条件下生存。我们对我们的犬 GSC 和人类之间共享的其他常见改变的基因组灶点进行了类似的分析GBM。含有 CDK2NA 的犬 GSC 基因组缺失在进化上与 HSA 9p21-p22 的一个非常小的区域相关,突出了 CDKN2A 在神经胶质瘤生物学中的重要性,并削弱了共同删除的大量其他基因(过客基因)的潜在重要性在 HSA 9 中发现的大 CNA 中。事实上,包含 CDKN2A 的小基因座两侧的犬染色体区域被扩增,表明特定的CDKN2A 缺失在神经胶质瘤生物学中的作用,同时可能排除 HSA 9 中的许多连锁共缺失基因。在我们的犬 GSC 中包含 p16/Ink4a 基因座的最小缺失区域内,有几个干扰素基因(IFNB1、IFNA5、IFNA13 和 IFNA7) ) 也被删除。这可能对 Cerami 等人最近鉴定的 IFNAR1 基因感兴趣。通过自动网络分析(人类交互网络)作为 PIK3R1 模块中的链接基因。该模块将多个 IFNA 基因和 IFNB1 与 IFNAR1 连接起来,在 TCGA 数据库中发现 25% 的 GBM 发生了改变,但正如作者所表达的,由于 IFN 基因与 CDKN2A 非常接近,因此意义未知。犬和人类神经胶质瘤中 CDKN2A 和 IFNAR1 基因的共同缺失强化了 IFNAR1 是 GBM 生物学中潜在重要基因的论点。在 CFA 6 中观察到与更恶性的异种移植神经胶质瘤相关的额外染色体扩增,这与 HSA 7 共享进化上保守的同线性。这是特别令人感兴趣的,因为三体性 HSA 7 是常见的发现GBM。该区域包含胶质母细胞瘤扩增序列 (GBAS) 基因,据报道该基因在高达 40% 的人类 GBM 中被扩增。 人类 GBM 中其他常见改变的焦点在我们的犬 GSC 中表现出惊人的保守性,包括 MDM4、MDM2 扩增周围的那些,以及 HSA 6 和 13 中通常删除的基因组区域。这些在两个物种中都保守的 CNA 中的许多都含有良好的已知的潜在抑癌基因或癌基因。 其中一个例子是 Gli1,它是一种参与音刺猬信号转导的转录因子,可能在促进肿瘤细胞侵袭中发挥作用。 Gli1 基因 (HSA 12q13.2-13.3) 在人类 GBM 子集中以及我们的犬神经胶质瘤 (CFA 10) 中都有扩增。相比之下,有趣的是,在人类原发性 GBM 中观察到的表皮生长因子受体 (EGFR) 扩增在我们的犬三级肿瘤中并未观察到,这与继发性人类 GBM 中缺乏扩增一致。 因此,这些共享基因组改变的焦点使我们能够比通过仅来自一个物种的神经胶质瘤的基因组研究更有确定性地识别出一系列负责驱动人类和犬神经胶质瘤发生的基因组事件。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Glioma stem cells: better flat than round.
- DOI:10.1016/j.stem.2009.05.013
- 发表时间:2009-06
- 期刊:
- 影响因子:23.9
- 作者:K. Woolard;H. Fine
- 通讯作者:K. Woolard;H. Fine
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Howard Fine其他文献
Howard Fine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Howard Fine', 18)}}的其他基金
Exploring the Therapeutic Potential of Stem Cell Biology in Gliomas
探索干细胞生物学在神经胶质瘤中的治疗潜力
- 批准号:
7965746 - 财政年份:
- 资助金额:
$ 63.3万 - 项目类别:
SCF as a Novel CNS and Glioma-Derived Angiogenic Factor and SC Chemotaxic Factor
SCF 作为一种新型 CNS 和神经胶质瘤衍生的血管生成因子和 SC 趋化因子
- 批准号:
7966056 - 财政年份:
- 资助金额:
$ 63.3万 - 项目类别:
The Role of miRNAs in Glioma Stem Cell and Glioma Biology
miRNA 在神经胶质瘤干细胞和神经胶质瘤生物学中的作用
- 批准号:
7966059 - 财政年份:
- 资助金额:
$ 63.3万 - 项目类别:
The Pre-clinical and Clinical Development of Novel Molecularly Target
新型分子靶点的临床前和临床开发
- 批准号:
7592987 - 财政年份:
- 资助金额:
$ 63.3万 - 项目类别:
Exploring the Therapeutic Potential of Stem Cell Biology in Gliomas
探索干细胞生物学在神经胶质瘤中的治疗潜力
- 批准号:
8157495 - 财政年份:
- 资助金额:
$ 63.3万 - 项目类别:
The Role of miRNAs in Glioma Stem Cell and Glioma Biology
miRNA 在神经胶质瘤干细胞和神经胶质瘤生物学中的作用
- 批准号:
8349327 - 财政年份:
- 资助金额:
$ 63.3万 - 项目类别:
Elucidation and Exploitation of GSK3 as a Novel Glioma Therapeutic Target
GSK3 作为新型神经胶质瘤治疗靶点的阐明和开发
- 批准号:
8552857 - 财政年份:
- 资助金额:
$ 63.3万 - 项目类别:
相似海外基金
Canine Glioma and Embryonic Neural Stem Cell Project
犬神经胶质瘤和胚胎神经干细胞项目
- 批准号:
8349324 - 财政年份:
- 资助金额:
$ 63.3万 - 项目类别: