Combined multiscale modeling and experimental study of bacterial swarming
细菌群落的多尺度建模与实验研究相结合
基本信息
- 批准号:8604162
- 负责人:
- 金额:$ 28.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmsAssimilationsBacteriaBehaviorBiologicalBiological PhenomenaBurn injuryCell CommunicationCell DensityCellsCharacteristicsChemicalsClinicalCommunitiesComplexComputer SimulationCooperative BehaviorCouplesCuesCystic FibrosisDataEngineeringEnvironmentEventEyeFilmFlagellaGene ExpressionGeneric DrugsGeneticGenomicsGoalsGrowthHeterogeneityHumanImageIndividualInfectionKnowledgeLaboratoriesLaboratory StudyLeadLiquid substanceLungMeasuresMicrobial BiofilmsMicrospheresModelingMotionMovementNutrientPatternPattern FormationPhysical environmentPilumPopulationPreventionProcessProductionPropertyProteomicsPseudomonas aeruginosaRegulationReporterResearchRotationSignal TransductionSkinStimulusStressStructureSurfaceSurface TensionTestingTherapeuticTimeVariantWorkappendagebasecell behaviorcell motilitydensitydesignfluid flowgastrointestinal infectionhomoserine lactoneimaging Segmentationimprovedinterestmodels and simulationmulti-scale modelingmutantpathogenquorum sensingresearch studyrhamnolipidsimulationsurfactanttrend
项目摘要
DESCRIPTION (provided by applicant): Most bacteria in natural and clinical settings grow as surface-attached biofilms, which are bacterial communities that have self-assembled into an encased matrix. One mode of surface motility, called swarming, is observed in cells that are propelled by rotating flagella, by the secretion of slime, and by retracting type IV pili. Study of swarming is particularly important because its regulation is controlled by combination of complex and variable multi-scale events. While swarming, a bacterial community may move in a large-scale coordinated pattern exceeding the size of individual bacterium by orders of magnitude depending upon the gene expression of individual cells, the sensing of chemical signals present in a hydrating environment, and the physical characteristics influencing the attached bacterial cells. To date, the most advanced modeling efforts of bacterial motility have focused on single levels or scales, e.g., genomic/proteomic, cellular and population. The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that causes skin, eye, lung, and gastrointestinal infections in susceptible individuals. We propose to study P. aeruginosa swarming by developing and integrating models from micro-scales to macro-scales to analyze bacterial motility in concert with laboratory experiments. Integration between scales will lead to a much deeper understanding of the universal or generic features of biological phenomena and how simultaneous processes at different scales interact. The main hypothesis of this proposed research is that bacteria coordinate cell density and cooperation to maximize surface motility which requires assimilation of population, nutrient, and physical cues by these cells. Because identification of cell interactions is extremely difficult experimentally, we will use multi-scale models to perform predictive simulations describing complex bacterial interactions that potentially control swarming. Study of the mechanisms of bacterial pattern formation will help identify the key interactions between cells, describe a mechanism of bacterial surface colonization, and provide knowledge for engineering and controlling bacterial growth on surfaces. A key aspect of this work will be to compare the predictions obtained in silico with experimental observations to calibrate the model and use the model to generate new biological hypotheses to be tested experimentally. Of particular interests to be examined are the influence of motility patterns, surface liquid properties, and cell-cell physical interactions required for Pseudomonas aeruginosa swarming. Our proposed iterative approach will use multiscale model simulations and laboratory experiments to describe variations to swarming with alterations to motility and rhamnolipid production in combination with laboratory examination of isogenic mutants deficient in certain motility modes or rhamnolipid production. This work will allow us to determine how bacteria efficiently colonize surfaces by coordinating their motion and rhamnolipid production over time.
描述(由申请人提供):自然和临床环境中的大多数细菌以表面附着的生物膜的形式生长,这些生物膜是自组装成封闭基质的细菌群落。在由旋转鞭毛、分泌粘液和回缩 IV 型菌毛推动的细胞中观察到一种称为集群的表面运动模式。蜂群的研究尤为重要,因为其调节是由复杂多变的多尺度事件的组合控制的。在群集时,细菌群落可能以大规模协调模式移动,其大小超过单个细菌的大小几个数量级,具体取决于单个细胞的基因表达、对水合环境中存在的化学信号的感知以及影响细菌的物理特性。附着的细菌细胞。迄今为止,最先进的细菌运动建模工作都集中在单一水平或尺度上,例如基因组/蛋白质组、细胞和群体。 铜绿假单胞菌是一种机会性人类病原体,可引起易感个体的皮肤、眼睛、肺部和胃肠道感染。我们建议通过开发和集成从微观尺度到宏观尺度的模型来研究铜绿假单胞菌群聚,以与实验室实验相结合来分析细菌运动。尺度之间的整合将导致对生物现象的普遍或一般特征以及不同尺度的同时过程如何相互作用的更深入的理解。这项研究的主要假设是,细菌协调细胞密度和合作,以最大限度地提高表面运动性,这需要这些细胞对种群、营养和物理信号的同化。由于细胞相互作用的识别在实验上极其困难,因此我们将使用多尺度模型来进行预测模拟,描述可能控制集群的复杂细菌相互作用。研究细菌模式形成的机制将有助于识别细胞之间的关键相互作用,描述细菌表面定植的机制,并为工程和控制表面细菌生长提供知识。 这项工作的一个关键方面是将计算机中获得的预测与实验观察结果进行比较,以校准模型并使用该模型生成新的生物学假设以进行实验测试。特别值得研究的是铜绿假单胞菌群聚所需的运动模式、表面液体特性和细胞间物理相互作用的影响。我们提出的迭代方法将使用多尺度模型模拟和实验室实验来描述随着运动性和鼠李糖脂产生的改变而改变的蜂群变化,并结合对某些运动模式或鼠李糖脂产生缺陷的同基因突变体的实验室检查。这项工作将使我们能够确定细菌如何通过随着时间的推移协调细菌的运动和鼠李糖脂的产生来有效地定植表面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Alber其他文献
Mark Alber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Alber', 18)}}的其他基金
Multiscale modeling and empirical study of a mechanism limiting blood clot growth
限制血块生长机制的多尺度建模和实证研究
- 批准号:
8898196 - 财政年份:2014
- 资助金额:
$ 28.88万 - 项目类别:
Combined multiscale modeling and experimental study of bacterial swarming
细菌群落的多尺度建模与实验研究相结合
- 批准号:
8451418 - 财政年份:2012
- 资助金额:
$ 28.88万 - 项目类别:
Combined multiscale modeling and experimental study of bacterial swarming
细菌群落的多尺度建模与实验研究相结合
- 批准号:
8239007 - 财政年份:2012
- 资助金额:
$ 28.88万 - 项目类别:
Study of the interplay of motility mechanisms during swaming of Myxococcus xanthu
黄粘球菌游动过程中运动机制相互作用的研究
- 批准号:
8332763 - 财政年份:2011
- 资助金额:
$ 28.88万 - 项目类别:
Study of the interplay of motility mechanisms during swaming of Myxococcus xanthu
黄粘球菌游动过程中运动机制相互作用的研究
- 批准号:
8471126 - 财政年份:2011
- 资助金额:
$ 28.88万 - 项目类别:
Study of the interplay of motility mechanisms during swaming of Myxococcus xanthu
黄粘球菌游动过程中运动机制相互作用的研究
- 批准号:
8244573 - 财政年份:2011
- 资助金额:
$ 28.88万 - 项目类别:
相似国自然基金
多源遥感高分辨率时空连续地表实际蒸散发算法研究
- 批准号:41801346
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
粒子滤波器局地化算法研究
- 批准号:41606012
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
联合机器学习和多尺度集合卡尔曼滤波算法的积雪数据同化方法研究
- 批准号:41671375
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
四维蒸散同化中非正态不确定性的估计与控制
- 批准号:41671368
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
基于粒子滤波算法的CA-MAS模型优化及建设用地扩张模拟研究
- 批准号:41601459
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 2: Mathematical modeling of factors that influence children's respiratory health
项目2:影响儿童呼吸健康因素的数学模型
- 批准号:
10362585 - 财政年份:2020
- 资助金额:
$ 28.88万 - 项目类别:
Project 2: Mathematical modeling of factors that influence children's respiratory health
项目2:影响儿童呼吸健康因素的数学模型
- 批准号:
10132360 - 财政年份:2020
- 资助金额:
$ 28.88万 - 项目类别:
Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
- 批准号:
10241253 - 财政年份:2018
- 资助金额:
$ 28.88万 - 项目类别:
Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
- 批准号:
10006784 - 财政年份:2018
- 资助金额:
$ 28.88万 - 项目类别:
Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
- 批准号:
10699327 - 财政年份:2018
- 资助金额:
$ 28.88万 - 项目类别: