Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
基本信息
- 批准号:10699327
- 负责人:
- 金额:$ 172.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-05 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAlgorithmsAssimilationsBacterial MeningitisBacteriologyBig DataCessation of lifeCharacteristicsCholeraClimateClinical TrialsCommunicable DiseasesComplexCountryDataDecision MakingDeveloped CountriesDeveloping CountriesDiagnosticDiarrheaDimensionsDiseaseDisease OutbreaksEconomicsEngineeringEnvironmental Risk FactorEpidemicEquilibriumExanthemaExerciseFeverFrequenciesGenus staphylococcusGeographyHIVHandHealth PolicyHospitalsHybridsIndividualInfantInfectionInfrastructureInvestmentsLaboratoriesLeadershipLeptospirosisMachine LearningMalariaMeaslesMedicalMedical emergencyMelioidosisMeningitisMethodsMicrobiologyModelingMolecularMorbidity - disease rateNamesNewborn InfantParalysedPatient-Focused OutcomesPatientsPhysiciansPopulationPrediction of Response to TherapyPreventiveProcessPublic HealthRainReactionResistanceResourcesRoleSepsisSpecimenSyndromeSystemTechniquesTechnologyTestingTimeTrainingUgandaWorkacute infectionantigen testantimicrobialauthorityclimate datacostcost outcomesdata fusiondesigneffective therapyfightingfluglobal healthimprovedindividual patientinfant infectioninfectious disease modelinfectious disease treatmentinnovationinsightmicrobialmortalitynovelopen sourcepathogenpersonalized medicinepersonalized predictionspoint of carepredictive modelingprospectiveresistance genespreading factorsurveillance data
项目摘要
Challenge, Innovation and Impact: In recent years, we have demonstrated that it is feasible to predict
epidemic disease outbreaks from retrospective seasonal and geographical case data and to show that we can
take climate factors into account in our predictive models. We are moving closer to real-time prediction at the
population level. But we have never used prediction at point-of-care for treating the individual patient.
Presently, personalized medicine uses delayed results of laboratory testing of individuals. For infectious
disease, most of such testing has targeted the pathogen in the host-pathogen interaction. The role of
laboratory testing is to modify therapy after a variable period of time delay. Personalized medicine today is
reactive. Complicating matters further, many infectious epidemic diseases are strongly dependent on
environmental factors and climate. Lastly, we want to name the pathogens we are fighting, but we really need
to know the resistance characteristics to select therapy for patients effectively. Both speciation and resistance
can now be determined from molecular data, which can be integrated into point-of-care treatment predictions.
We here propose a radically different approach to the treatment of infectious diseases. Our
hypothesis is that the alternative to time-delayed and expensive laboratory analysis of specimens from
individual patients, is to use predictive modeling to forecast point-of-care treatment. Time-delayed
personalized testing can be conducted as surveillance, and that data used for real-time prediction to guide
point-of-care treatment.
We will introduce predictive personalized public health (P3H) policy at the individual patient level,
with the potential to substantially improve patient outcomes compared with our present reactive approaches.
Our key rationale is to expand population infectious disease predictive modeling in order to achieve prediction
for treatment at point-of-care. Our primary insight is that we can reposition the delayed reactive personalized
testing from the urgent medical decision-making process, and into a predictive modeling framework. The gaps
and opportunities in technology that we will address are four-fold. First, we will employ individual case
geospatial mapping at a fine scale to take into account infection spread and environmental factors. Second,
our ability to perform pan-microbial analysis using molecular techniques is now feasible. Third, modeling our
novel fusion of data has no simple low-dimensional solution – but machine learning technologies are now
capable of handling such big data assimilation, model discovery and prediction. Fourth, our proposal is not an
academic exercise. We have a partnership with the economic planners within a developing country to design
and implement our new methods. We will prospectively tune and validate our algorithms in real-time. Our
deliverable will be an open-source framework ready for clinical trials testing and adaptation to the public health
infrastructure in any country.
挑战、创新和影响:近年来,我们已经证明可以预测
从回顾性季节性和地理案例数据中了解流行病爆发,并表明我们可以
在我们的预测模型中考虑气候因素,我们正在接近实时预测。
但我们从未在护理点使用预测来治疗个体患者。
目前,个性化医疗使用个体实验室检测的延迟结果来检测传染性。
疾病,大多数此类测试都针对宿主与病原体相互作用中的病原体。
实验室测试是在一段可变的时间延迟后修改治疗,今天的个性化医疗是。
使事情变得更加复杂的是,许多传染病都强烈依赖于这种疾病。
最后,我们想要命名我们正在对抗的病原体,但我们确实需要。
了解耐药特征,以便有效地为患者选择治疗方案。
现在可以根据分子数据确定,并将其整合到护理点治疗预测中。
我们在此提出一种完全不同的治疗传染病的方法。
假设是,对来自样本的耗时且昂贵的实验室分析的替代方案
个体患者的方法是使用预测模型来预测即时治疗。
可以进行个性化测试作为监测,并使用数据进行实时预测以指导
护理点治疗。
我们将在个体患者层面引入预测性个性化公共卫生(P3H)政策,
与我们目前的反应性方法相比,有可能显着改善患者的治疗结果。
我们的关键理由是扩大人群传染病预测模型以实现预测
我们的主要见解是我们可以重新定位延迟反应的个性化。
从紧急医疗决策过程进行测试,并进入预测建模框架。
我们将解决的技术机遇有四个方面:首先,我们将采用个案。
精细绘制地理空间地图,考虑感染传播和环境因素。
我们使用分子技术进行泛微生物分析的能力现在是可行的。第三,对我们的模型进行建模。
新颖的数据融合没有简单的低维解决方案 - 但机器学习技术现在
第四,我们的建议不是一个能够处理此类大数据同化、模型发现和预测的能力。
我们与发展中国家的经济规划者合作进行设计。
并实施我们的新方法。我们将前瞻性地实时调整和验证我们的算法。
可交付成果将是一个开源框架,可供临床试验测试和适应公共卫生
任何国家的基础设施。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Congenital Cytomegalovirus Infection Burden and Epidemiologic Risk Factors in Countries With Universal Screening: A Systematic Review and Meta-analysis.
- DOI:10.1001/jamanetworkopen.2021.20736
- 发表时间:2021-08-02
- 期刊:
- 影响因子:13.8
- 作者:Ssentongo P;Hehnly C;Birungi P;Roach MA;Spady J;Fronterre C;Wang M;Murray-Kolb LE;Al-Shaar L;Chinchilli VM;Broach JR;Ericson JE;Schiff SJ
- 通讯作者:Schiff SJ
Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review.
- DOI:10.1001/jamanetworkopen.2021.28568
- 发表时间:2021-10-01
- 期刊:
- 影响因子:13.8
- 作者:Groff D;Sun A;Ssentongo AE;Ba DM;Parsons N;Poudel GR;Lekoubou A;Oh JS;Ericson JE;Ssentongo P;Chinchilli VM
- 通讯作者:Chinchilli VM
Pan-African evolution of within- and between-country COVID-19 dynamics.
- DOI:10.1073/pnas.2026664118
- 发表时间:2021-07-13
- 期刊:
- 影响因子:11.1
- 作者:Ssentongo P;Fronterre C;Geronimo A;Greybush SJ;Mbabazi PK;Muvawala J;Nahalamba SB;Omadi PO;Opar BT;Sinnar SA;Wang Y;Whalen AJ;Held L;Jewell C;Muwanguzi AJB;Greatrex H;Norton MM;Diggle PJ;Schiff SJ
- 通讯作者:Schiff SJ
mbQTL: an R/Bioconductor package for microbial quantitative trait loci (QTL) estimation.
- DOI:10.1093/bioinformatics/btad565
- 发表时间:2023-09-02
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Stabilizing the return to normal behavior in an epidemic.
在流行病中稳定恢复正常行为。
- DOI:10.1101/2023.03.13.23287222
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Berry,Tyrus;Ferrari,Matthew;Sauer,Timothy;Greybush,StevenJ;Ebeigbe,Donald;Whalen,AndrewJ;Schiff,StevenJ
- 通讯作者:Schiff,StevenJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN J SCHIFF其他文献
STEVEN J SCHIFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN J SCHIFF', 18)}}的其他基金
Intracranial multimodal physiological monitoring in acute brain injury
急性脑损伤的颅内多模态生理监测
- 批准号:
10675428 - 财政年份:2022
- 资助金额:
$ 172.85万 - 项目类别:
Intracranial multimodal physiological monitoring in acute brain injury
急性脑损伤的颅内多模态生理监测
- 批准号:
10291003 - 财政年份:2022
- 资助金额:
$ 172.85万 - 项目类别:
Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
- 批准号:
10241253 - 财政年份:2018
- 资助金额:
$ 172.85万 - 项目类别:
Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
- 批准号:
10006784 - 财政年份:2018
- 资助金额:
$ 172.85万 - 项目类别:
Control of the Neonatal Septisome and Hydrocephalus in sub-Saharan Africa
撒哈拉以南非洲地区新生儿败血症和脑积水的控制
- 批准号:
8754244 - 财政年份:2015
- 资助金额:
$ 172.85万 - 项目类别:
Innovations at the Intersection of Neural Engineering, Materials Sci & Medicine
神经工程、材料科学交叉点的创新
- 批准号:
7856458 - 财政年份:2009
- 资助金额:
$ 172.85万 - 项目类别:
Innovations at the Intersection of Neural Engineering, Materials Sci & Medicine
神经工程、材料科学交叉点的创新
- 批准号:
7941719 - 财政年份:2009
- 资助金额:
$ 172.85万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 172.85万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 172.85万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 172.85万 - 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 172.85万 - 项目类别: