Informatic tools for predicting an ordinal response for high-dimensional data

用于预测高维数据顺序响应的信息工具

基本信息

  • 批准号:
    8714054
  • 负责人:
  • 金额:
    $ 22.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Health status and outcomes are frequently measured on an ordinal scale. Examples include scoring methods for liver biopsy specimens from patients with chronic hepatitis, including the Knodell hepatic activity index, the Ishak score, and the METAVIR score. In addition, tumor-node-metasis stage for cancer patients is an ordinal scaled measure. Moreover, the more recently advocated method for evaluating response to treatment in target tumor lesions is the Response Evaluation Criteria In Solid Tumors method, with ordinal outcomes defined as complete response, partial response, stable disease, and progressive disease. Traditional ordinal response modeling methods assume independence among the predictor variables and require that the number of samples (n) exceed the number of covariates (p). These are both violated in the context of high-throughput genomic studies. Recently, penalized models have been successfully applied to high-throughput genomic datasets in fitting linear, logistic, and Cox proportional hazards models with excellent performance. However, extension of penalized models to the ordinal response setting has not been fully described nor has software been made generally available. Herein we propose to apply the L1 penalization method to ordinal response models to enable modeling of common ordinal response data when a high-dimensional genomic data comprise the predictor space. This study will expand the scope of our current research by providing additional model-based ordinal classification methodologies applicable for high-dimensional datasets to accompany the heuristic based classification tree and random forest ordinal methodologies we have previously described. The specific aims of this application are to: (1) Develop R functions for implementing the stereotype logit model as well as an L1 penalized stereotype logit model for modeling an ordinal response. (2) Empirically examine the performance of the L1 penalized stereotype logit model and competitor ordinal response models by performing a simulation study and applying the models to publicly available microarray datasets. (3) Develop an R package for fitting a random-effects ordinal regression model for clustered ordinal response data. (4) Extend the random-effects ordinal regression model to include an L1 penalty term to accomodate high-dimensional covariate spaces and empirically examine the performance of the L1random-effects ordinal regression model through application to microarray data. Studies involving protocol biopsies where both histopathological assessment and microarray studies are performed at the same time point are increasingly being performed, so that the methodology and software developed in this application will provide unique informatic methods for analyzing such data. Moreover, the ordinal response extensions proposed in this application, though initially conceived of by considering microarray applications, will be broadly applicable to a variety of health, social, and behavioral research fields, which commonly collect human preference data and other responses on an ordinal scale.
描述(由申请人提供): 健康状况和结果经常以序数量测量。例如,包括慢性肝炎患者的肝活检标本的评分方法,包括Knodell肝活动指数,ISHAK评分和Metavir评分。此外,癌症患者的肿瘤淋巴结阶段是一种序数尺度。此外,最近提倡评估目标肿瘤治疗反应的方法是实体瘤方法中的反应评估标准,其顺序结局定义为完全反应,部分反应,稳定疾病和进行性疾病。传统的序数响应模型方法假定预测变量之间的独立性,并要求样本(n)的数量超过协变量(P)的数量。这些都在高通量基因组研究的背景下违反。最近,惩罚模型已成功地应用于具有出色性能的线性,逻辑和COX比例危害模型的高通量基因组数据集。但是,将惩罚模型扩展到序数响应设置尚未得到充分描述,也没有使软件通常可用。本文中,我们建议将L1惩罚方法应用于序数响应模型,以实现高维基因组数据构成预测空间时,可以对公共序数响应数据进行建模。这项研究将通过提供适用于高维数据集的其他基于模型的序数分类方法来扩大我们当前研究的范围,以伴随基于启发式的分类树和我们先前已经描述的随机森林序数方法。本应用程序的具体目的是:(1)开发用于实现刻板印象模型的R功能以及L1惩罚的刻板印象logit模型,用于建模序数响应。 (2)通过进行仿真研究并将模型应用于公开可用的微阵列数据集,从经验审查L1惩罚刻板印象logit模型和竞争对手序数响应模型的性能。 (3)开发一个R软件包,用于拟合随机效应的序数回归模型,以用于聚类的序数响应数据。 (4)将随机效应的顺序回归模型扩展到包括L1惩罚项,以适应高维协方差空间,并通过将L1random效应通过将微阵列数据应用于微阵列数据进行经验研究。在同一时间点进行组织病理学评估和微阵列研究的协议活检的研究正在越来越多地进行,因此本应用程序中开发的方法和软件将为分析此类数据提供独特的信息方法。此外,该应用程序中提出的序数响应扩展,尽管最初通过考虑微阵列应用来想象,但将广泛适用于各种健康,社会和行为研究领域,通常收集人类的偏好数据和其他响应,并以序数量表收集其他响应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kellie J. Archer其他文献

Regularized Mixture Cure Models Identify a Gene Signature That Improves Risk Stratification within the Favorable-Risk Group in 2017 European Leukemianet (ELN) Classification of Acute Myeloid Leukemia (Alliance 152010)
  • DOI:
    10.1182/blood-2022-166477
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Kellie J. Archer;Han Fu;Krzysztof Mrózek;Deedra Nicolet;Jessica Kohlschmidt;Alice S. Mims;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld
  • 通讯作者:
    Ann-Kathrin Eisfeld
Characterization of Survival Outcomes and Clinical and Molecular Modulators in Adult Patients with Core-Binding Factor Acute Myeloid Leukemia (CBF-AML) Treated with Hidac Consolidation: An Alliance Legacy Study
  • DOI:
    10.1182/blood-2022-167210
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathan Hyak;Deedra Nicolet;Jessica Kohlschmidt;Kellie J. Archer;James S. Blachly;Karilyn T. Larkin;Bayard L. Powell;Jonathan E. Kolitz;Maria R. Baer;William G. Blum;Geoffrey L. Uy;Wendy Stock;Richard M. Stone;John C. Byrd;Krzysztof Mrózek;Ann-Kathrin Eisfeld;Alice S. Mims
  • 通讯作者:
    Alice S. Mims
Comparing genetic profiles of embryonic day 9 (E9) mouse yolk sac erythroid and erythroid and epithelial cells isolated by microdissection
  • DOI:
    10.1016/j.bcmd.2006.10.124
  • 发表时间:
    2007-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Latasha C. Redmond;Jack L. Haar;Catherine I. Dumur;Kellie J. Archer;Priyadarshi Basu;Joyce A. Lloyd
  • 通讯作者:
    Joyce A. Lloyd
Beat-AML 2024 ELN–refined risk stratification for older adults with newly diagnosed AML given lower-intensity therapy
  • DOI:
    10.1182/bloodadvances.2024013685
  • 发表时间:
    2024-10-22
  • 期刊:
  • 影响因子:
  • 作者:
    Fieke W. Hoff;William G. Blum;Ying Huang;Rina Li Welkie;Ronan T. Swords;Elie Traer;Eytan M. Stein;Tara L. Lin;Kellie J. Archer;Prapti A. Patel;Robert H. Collins;Maria R. Baer;Vu H. Duong;Martha L. Arellano;Wendy Stock;Olatoyosi Odenike;Robert L. Redner;Tibor Kovacsovics;Michael W. Deininger;Joshua F. Zeidner
  • 通讯作者:
    Joshua F. Zeidner
Outcome Prediction By the New 2022 European Leukemia Net (ELN) Genetic-Risk Classification for Adult Patients (Pts) with Acute Myeloid Leukemia (AML): An Alliance Study
  • DOI:
    10.1182/blood-2022-167352
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Krzysztof Mrózek;Jessica Kohlschmidt;James S. Blachly;Deedra Nicolet;Andrew J. Carroll;Kellie J. Archer;Alice S. Mims;Karilyn T. Larkin;Shelley Orwick;Christopher C. Oakes;Jonathan E. Kolitz;Bayard L. Powell;William G. Blum;Guido Marcucci;Maria R. Baer;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld
  • 通讯作者:
    Ann-Kathrin Eisfeld

Kellie J. Archer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kellie J. Archer', 18)}}的其他基金

Pretransplant comprehensive scores to predict long term graft outcomes
移植前综合评分可预测长期移植结果
  • 批准号:
    10679624
  • 财政年份:
    2023
  • 资助金额:
    $ 22.7万
  • 项目类别:
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
  • 批准号:
    10340087
  • 财政年份:
    2022
  • 资助金额:
    $ 22.7万
  • 项目类别:
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
  • 批准号:
    10544523
  • 财政年份:
    2022
  • 资助金额:
    $ 22.7万
  • 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
  • 批准号:
    9262665
  • 财政年份:
    2017
  • 资助金额:
    $ 22.7万
  • 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
  • 批准号:
    10203464
  • 财政年份:
    2017
  • 资助金额:
    $ 22.7万
  • 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
  • 批准号:
    9753687
  • 财政年份:
    2017
  • 资助金额:
    $ 22.7万
  • 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
  • 批准号:
    9273725
  • 财政年份:
    2012
  • 资助金额:
    $ 22.7万
  • 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
  • 批准号:
    8216289
  • 财政年份:
    2012
  • 资助金额:
    $ 22.7万
  • 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
  • 批准号:
    7805045
  • 财政年份:
    2009
  • 资助金额:
    $ 22.7万
  • 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
  • 批准号:
    7670456
  • 财政年份:
    2008
  • 资助金额:
    $ 22.7万
  • 项目类别:

相似国自然基金

基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
  • 批准号:
    52365047
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
锡(铋、铟)氧/硫化物在CO2电还原过程中的重构行为与催化机制研究
  • 批准号:
    52372217
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
中熵合金低温协同强化及其多场耦合环境下应力腐蚀行为的研究
  • 批准号:
    52371070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
废胶粉-钢渣沥青路面抗滑性能演化行为与机理及对交通安全的影响研究
  • 批准号:
    52368067
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
力学行为演变机理下泡沫沥青新装置适应性设计方法研究
  • 批准号:
    52375230
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CSHL Statistical Methods for Functional Genomics Course
CSHL 功能基因组学统计方法课程
  • 批准号:
    10088972
  • 财政年份:
    2021
  • 资助金额:
    $ 22.7万
  • 项目类别:
CSHL Statistical Methods for Functional Genomics Course
CSHL 功能基因组学统计方法课程
  • 批准号:
    10654821
  • 财政年份:
    2021
  • 资助金额:
    $ 22.7万
  • 项目类别:
CSHL Statistical Methods for Functional Genomics Course
CSHL 功能基因组学统计方法课程
  • 批准号:
    10482328
  • 财政年份:
    2021
  • 资助金额:
    $ 22.7万
  • 项目类别:
DATA ANALYSIS AND STATISTICAL PROGRAMING SUPPORT (BASE CONTRACT) COMPANY: PROSPECTIVE GROUP
数据分析和统计编程支持(基础合同)公司:PROSPECTIVE GROUP
  • 批准号:
    10371011
  • 财政年份:
    2021
  • 资助金额:
    $ 22.7万
  • 项目类别:
DATA ANALYSIS AND STATISTICAL PROGRAMING SUPPORT (BASE CONTRACT) COMPANY: PROSPECTIVE GROUP
数据分析和统计编程支持(基础合同)公司:PROSPECTIVE GROUP
  • 批准号:
    10119208
  • 财政年份:
    2020
  • 资助金额:
    $ 22.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了