Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
基本信息
- 批准号:10544523
- 负责人:
- 金额:$ 25.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAmerican Cancer SocietyArchivesBiologicalBiological AssayCessation of lifeCharacteristicsChronicClinicalClinical TrialsClipComputer softwareCox Proportional Hazards ModelsDataData ScienceData SetDecision MakingDevelopmentDiagnosisDiseaseDisease-Free SurvivalEffectivenessEventGene ExpressionGenesGenomicsMalignant NeoplasmsMethodologyMethodsMethylationMicroRNAsModalityModelingMolecularMutationOncologyOutcomePatientsPerformancePopulation StudyPredispositionProbabilityProcessPrognosisPropertyRUNX1 geneResearchResearch PersonnelResearch Project GrantsRiskSample SizeSamplingSampling StudiesStatistical MethodsStem cell transplantSubgroupSystemTechniquesTechnologyTestingThe Cancer Genome AtlasTherapeuticTherapeutic AgentsTimeTissue SampleUnited States National Library of Medicineagedbiomedical informaticscancer typechemotherapyclinical practiceexperiencefollow-uphazardhigh dimensionalityimprovedinterestmRNA Expressionmultidimensional datanew therapeutic targetnovelprognosticrisk stratificationsemiparametricsimulationsoftware developmentsurvival outcomesurvivorshiptargeted treatmenttherapeutic target
项目摘要
Molecular features associated with time-to-event outcomes, such as overall or disease-free survival, may be
prognostically relevant or potential therapeutic targets. Therefore, analyzing data from high-throughput genomic
assays with clinical follow-up data has been of growing interest. The Cancer Genome Atlas (TCGA) Project has
collected baseline demographic, clinical characteristics, and follow-up data for 11,125 patients for 32 different
cancer types and corresponding tissue samples were processed for examining SNPs, copy number, methylation,
miRNA expression, and mRNA expression. Because the number of variables (P ) exceeds the sample size (N),
one strategy frequently employed when associating molecular features to survivorship data is to fit univariable
Cox proportional hazards (PH) models followed by adjustment for multiple hypothesis tests using a false discovery
rate approach. However, most chronic conditions and diseases, including cancer, are likely caused by multiple
dysregulated genes or mutations. It is therefore critical to fit multivariable models in the presence of a high-
dimensional covariate space. Traditional statistical methods cannot be used when the number of features exceeds
the sample size (e.g., P > N), though penalized methods perform automatic variable selection and accommodate
the P > N scenario. Penalized approaches including LASSO, smoothly clipped absolute deviation (SCAD),
adaptive LASSO, and Bayesian LASSO have all been extended to Cox's PH model for handling high-dimensional
covariate spaces. However, when modeling survival or other time-to-event outcomes, the Cox PH model assumes
that all subjects will experience the event of interest, which is violated when a subset of subjects are cured.
Instead, when a subset of subjects in the data are cured, mixture cure models should be fit. Although mixture
cure models have been described for traditional settings where the number of samples exceeds the number
of covariates, limited variable selection methods and no methods for high-dimensional model fitting currently
exist for mixture cure models. Therefore, this project will overcome a critical barrier to progress in this field
by developing penalized parametric and semi-parametric mixture cure models applicable for high-dimensional
datasets. The specific aims of this application are to: (1) Develop penalized parametric mixture cure models
for high-dimensional datasets; and (2) Develop a penalized semi-parametric proportional hazards mixture cure
model for high-dimensional datasets. For both aims we will characterize the performance of the methods using
extensive simulation studies, develop software, and distribute R packages to CRAN. In aim (3) we will identify
molecular features associated with cure and survival using our large unique AML dataset from the Alliance for
Clinical Trials in Oncology and assess robustness of findings using AML datasets from Gene Expression Omnibus
and The Cancer Genome Atlas project. This research will fill a critical gap as there are currently no mixture cure
models for high-dimensional data. We anticipate application of our methods to our AML data will enhance existing
risk stratification systems used in daily clinical practice that determine treatment intensity and modality.
与事件时间结局相关的分子特征,例如总体或无病生存期,可能是
预后相关或潜在的治疗靶标。因此,从高通量基因组中分析了数据
带有临床随访数据的测定越来越引起人们的关注。癌症基因组图集(TCGA)项目
收集了11,125例患者的基线人口统计学,临床特征和随访数据,32例不同
处理癌症类型和相应的组织样品,以检查SNP,拷贝数,甲基化,
miRNA表达和mRNA表达。因为变量(p)的数量超过样本大小(n),所以
将分子特征与生存数据关联时经常采用的一种策略是可拟合单变量
COX比例危害(pH)模型,然后使用虚假发现进行多个假设检验调整
费率方法。但是,大多数慢性病和疾病(包括癌症)可能是由多种引起的
基因或突变失调。因此,在存在高 -
尺寸协变空间。当特征数量超过时,传统的统计方法无法使用
样本量(例如,p> n),尽管受惩罚的方法执行自动变量选择并接受
p> n场景。惩罚方法,包括拉索,平稳剪切的绝对偏差(SCAD),
自适应拉索和贝叶斯套索都扩展到Cox的pH模型,用于处理高维
协变空间。但是,当对生存或其他事件结果进行建模时,Cox pH模型假设
所有受试者都会遇到感兴趣的事件,这是在治愈一部分受试者时违反的。
取而代之的是,当数据中的受试者的子集得到固化时,应拟合混合物治疗模型。虽然混合物
已经描述了用于样本数量数量数量的传统设置的治疗模型
协变量,有限的可变选择方法和当前高维模型拟合的方法
存在用于混合固化模型。因此,该项目将克服这个领域的关键障碍
通过开发适用于高维的惩罚参数和半参数混合物固化模型
数据集。该应用程序的特定目的是:(1)开发惩罚参数混合物治疗模型
用于高维数据集; (2)开发惩罚的半参数比例危害混合物治疗
高维数据集的模型。对于这两个目标,我们将使用
广泛的仿真研究,开发软件和分布式的R包给Cran。在目标(3)我们将确定
使用我们的大型独特AML数据集与Alliance相关的分子特征和生存相关
肿瘤学的临床试验并使用基因表达综合的AML数据集评估发现的鲁棒性
和癌症基因组图集项目。这项研究将填补关键的差距,因为目前尚无混合疗法
高维数据的模型。我们希望将我们的方法应用于AML数据将增强现有
日常临床实践中使用的风险地层系统决定了治疗强度和方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kellie J. Archer其他文献
Regularized Mixture Cure Models Identify a Gene Signature That Improves Risk Stratification within the Favorable-Risk Group in 2017 European Leukemianet (ELN) Classification of Acute Myeloid Leukemia (Alliance 152010)
- DOI:
10.1182/blood-2022-166477 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Kellie J. Archer;Han Fu;Krzysztof Mrózek;Deedra Nicolet;Jessica Kohlschmidt;Alice S. Mims;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld - 通讯作者:
Ann-Kathrin Eisfeld
Characterization of Survival Outcomes and Clinical and Molecular Modulators in Adult Patients with Core-Binding Factor Acute Myeloid Leukemia (CBF-AML) Treated with Hidac Consolidation: An Alliance Legacy Study
- DOI:
10.1182/blood-2022-167210 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Jonathan Hyak;Deedra Nicolet;Jessica Kohlschmidt;Kellie J. Archer;James S. Blachly;Karilyn T. Larkin;Bayard L. Powell;Jonathan E. Kolitz;Maria R. Baer;William G. Blum;Geoffrey L. Uy;Wendy Stock;Richard M. Stone;John C. Byrd;Krzysztof Mrózek;Ann-Kathrin Eisfeld;Alice S. Mims - 通讯作者:
Alice S. Mims
Comparing genetic profiles of embryonic day 9 (E9) mouse yolk sac erythroid and erythroid and epithelial cells isolated by microdissection
- DOI:
10.1016/j.bcmd.2006.10.124 - 发表时间:
2007-03-01 - 期刊:
- 影响因子:
- 作者:
Latasha C. Redmond;Jack L. Haar;Catherine I. Dumur;Kellie J. Archer;Priyadarshi Basu;Joyce A. Lloyd - 通讯作者:
Joyce A. Lloyd
Beat-AML 2024 ELN–refined risk stratification for older adults with newly diagnosed AML given lower-intensity therapy
- DOI:
10.1182/bloodadvances.2024013685 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:
- 作者:
Fieke W. Hoff;William G. Blum;Ying Huang;Rina Li Welkie;Ronan T. Swords;Elie Traer;Eytan M. Stein;Tara L. Lin;Kellie J. Archer;Prapti A. Patel;Robert H. Collins;Maria R. Baer;Vu H. Duong;Martha L. Arellano;Wendy Stock;Olatoyosi Odenike;Robert L. Redner;Tibor Kovacsovics;Michael W. Deininger;Joshua F. Zeidner - 通讯作者:
Joshua F. Zeidner
Outcome Prediction By the New 2022 European Leukemia Net (ELN) Genetic-Risk Classification for Adult Patients (Pts) with Acute Myeloid Leukemia (AML): An Alliance Study
- DOI:
10.1182/blood-2022-167352 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Krzysztof Mrózek;Jessica Kohlschmidt;James S. Blachly;Deedra Nicolet;Andrew J. Carroll;Kellie J. Archer;Alice S. Mims;Karilyn T. Larkin;Shelley Orwick;Christopher C. Oakes;Jonathan E. Kolitz;Bayard L. Powell;William G. Blum;Guido Marcucci;Maria R. Baer;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld - 通讯作者:
Ann-Kathrin Eisfeld
Kellie J. Archer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kellie J. Archer', 18)}}的其他基金
Pretransplant comprehensive scores to predict long term graft outcomes
移植前综合评分可预测长期移植结果
- 批准号:
10679624 - 财政年份:2023
- 资助金额:
$ 25.93万 - 项目类别:
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10340087 - 财政年份:2022
- 资助金额:
$ 25.93万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9262665 - 财政年份:2017
- 资助金额:
$ 25.93万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
10203464 - 财政年份:2017
- 资助金额:
$ 25.93万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9753687 - 财政年份:2017
- 资助金额:
$ 25.93万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
9273725 - 财政年份:2012
- 资助金额:
$ 25.93万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8714054 - 财政年份:2012
- 资助金额:
$ 25.93万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8216289 - 财政年份:2012
- 资助金额:
$ 25.93万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7805045 - 财政年份:2009
- 资助金额:
$ 25.93万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7670456 - 财政年份:2008
- 资助金额:
$ 25.93万 - 项目类别:
相似海外基金
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10340087 - 财政年份:2022
- 资助金额:
$ 25.93万 - 项目类别:
Obesity, sedentary behaviors, and diet quality for prevention and early detection of early-onset colorectal neoplasia
肥胖、久坐行为和饮食质量有助于预防和早期发现早发性结直肠肿瘤
- 批准号:
10192685 - 财政年份:2020
- 资助金额:
$ 25.93万 - 项目类别:
Obesity, sedentary behaviors, and diet quality for prevention and early detection of early-onset colorectal neoplasia
肥胖、久坐行为和饮食质量有助于预防和早期发现早发性结直肠肿瘤
- 批准号:
10688157 - 财政年份:2020
- 资助金额:
$ 25.93万 - 项目类别:
Obesity, sedentary behaviors, and diet quality for prevention and early detection of early-onset colorectal neoplasia
肥胖、久坐行为和饮食质量有助于预防和早期发现早发性结直肠肿瘤
- 批准号:
10438561 - 财政年份:2020
- 资助金额:
$ 25.93万 - 项目类别:
Body composition and the obesity paradox in clear cell renal cell carcinoma
透明细胞肾细胞癌的身体成分和肥胖悖论
- 批准号:
10228024 - 财政年份:2019
- 资助金额:
$ 25.93万 - 项目类别: