Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
基本信息
- 批准号:10544523
- 负责人:
- 金额:$ 25.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAmerican Cancer SocietyArchivesBiologicalBiological AssayCessation of lifeCharacteristicsChronicClinicalClinical TrialsClipComputer softwareCox Proportional Hazards ModelsDataData ScienceData SetDecision MakingDevelopmentDiagnosisDiseaseDisease-Free SurvivalEffectivenessEventGene ExpressionGenesGenomicsMalignant NeoplasmsMethodologyMethodsMethylationMicroRNAsModalityModelingMolecularMutationOncologyOutcomePatientsPerformancePopulation StudyPredispositionProbabilityProcessPrognosisPropertyRUNX1 geneResearchResearch PersonnelResearch Project GrantsRiskSample SizeSamplingSampling StudiesStatistical MethodsStem cell transplantSubgroupSystemTechniquesTechnologyTestingThe Cancer Genome AtlasTherapeuticTherapeutic AgentsTimeTissue SampleUnited States National Library of Medicineagedbiomedical informaticscancer typechemotherapyclinical practiceexperiencefollow-uphazardhigh dimensionalityimprovedinterestmRNA Expressionmultidimensional datanew therapeutic targetnovelprognosticrisk stratificationsemiparametricsimulationsoftware developmentsurvival outcomesurvivorshiptargeted treatmenttherapeutic target
项目摘要
Molecular features associated with time-to-event outcomes, such as overall or disease-free survival, may be
prognostically relevant or potential therapeutic targets. Therefore, analyzing data from high-throughput genomic
assays with clinical follow-up data has been of growing interest. The Cancer Genome Atlas (TCGA) Project has
collected baseline demographic, clinical characteristics, and follow-up data for 11,125 patients for 32 different
cancer types and corresponding tissue samples were processed for examining SNPs, copy number, methylation,
miRNA expression, and mRNA expression. Because the number of variables (P ) exceeds the sample size (N),
one strategy frequently employed when associating molecular features to survivorship data is to fit univariable
Cox proportional hazards (PH) models followed by adjustment for multiple hypothesis tests using a false discovery
rate approach. However, most chronic conditions and diseases, including cancer, are likely caused by multiple
dysregulated genes or mutations. It is therefore critical to fit multivariable models in the presence of a high-
dimensional covariate space. Traditional statistical methods cannot be used when the number of features exceeds
the sample size (e.g., P > N), though penalized methods perform automatic variable selection and accommodate
the P > N scenario. Penalized approaches including LASSO, smoothly clipped absolute deviation (SCAD),
adaptive LASSO, and Bayesian LASSO have all been extended to Cox's PH model for handling high-dimensional
covariate spaces. However, when modeling survival or other time-to-event outcomes, the Cox PH model assumes
that all subjects will experience the event of interest, which is violated when a subset of subjects are cured.
Instead, when a subset of subjects in the data are cured, mixture cure models should be fit. Although mixture
cure models have been described for traditional settings where the number of samples exceeds the number
of covariates, limited variable selection methods and no methods for high-dimensional model fitting currently
exist for mixture cure models. Therefore, this project will overcome a critical barrier to progress in this field
by developing penalized parametric and semi-parametric mixture cure models applicable for high-dimensional
datasets. The specific aims of this application are to: (1) Develop penalized parametric mixture cure models
for high-dimensional datasets; and (2) Develop a penalized semi-parametric proportional hazards mixture cure
model for high-dimensional datasets. For both aims we will characterize the performance of the methods using
extensive simulation studies, develop software, and distribute R packages to CRAN. In aim (3) we will identify
molecular features associated with cure and survival using our large unique AML dataset from the Alliance for
Clinical Trials in Oncology and assess robustness of findings using AML datasets from Gene Expression Omnibus
and The Cancer Genome Atlas project. This research will fill a critical gap as there are currently no mixture cure
models for high-dimensional data. We anticipate application of our methods to our AML data will enhance existing
risk stratification systems used in daily clinical practice that determine treatment intensity and modality.
与事件发生时间结果相关的分子特征,例如总体生存率或无病生存率,可能是
因此,分析来自高通量基因组的数据。
癌症基因组图谱 (TCGA) 项目越来越引起人们的兴趣。
收集了 32 个不同领域 11,125 名患者的基线人口统计学、临床特征和随访数据
处理癌症类型和相应的组织样本以检查 SNP、拷贝数、甲基化、
miRNA 表达和 mRNA 表达 由于变量数量 (P ) 超过样本大小 (N),
将分子特征与生存数据相关联时经常采用的一种策略是拟合单变量
Cox 比例风险 (PH) 模型,然后使用错误发现对多个假设检验进行调整
然而,大多数慢性病和疾病,包括癌症,可能是由多种原因引起的。
因此,在存在高风险的情况下拟合多变量模型至关重要。
当特征数量超过维度协变量空间时,无法使用传统的统计方法。
样本大小(例如,P > N),尽管惩罚方法执行自动变量选择并适应
P > N 场景,包括 LASSO、平滑剪切绝对偏差 (SCAD)、
自适应LASSO和贝叶斯LASSO都已扩展到Cox的PH模型以处理高维
然而,在对生存或其他事件发生时间结果进行建模时,Cox PH 模型假设
所有受试者都会经历感兴趣的事件,当一部分受试者被治愈时,就会违反这一点。
相反,当数据中的一部分受试者得到治愈时,应该拟合混合治愈模型。
已针对样本数量超过数量的传统设置描述了治愈模型
协变量的数量、有限的变量选择方法以及目前没有高维模型拟合的方法
因此,该项目将克服该领域进展的关键障碍。
通过开发适用于高维的惩罚参数和半参数混合治愈模型
该应用程序的具体目标是:(1)开发惩罚参数混合固化模型。
对于高维数据集;(2) 开发惩罚半参数比例风险混合疗法
对于这两个目标,我们将使用这些方法来表征方法的性能。
在目标 (3) 中,我们将确定广泛的模拟研究、开发软件并将 R 包分发给 CRAN。
使用来自联盟的大型独特 AML 数据集与治愈和生存相关的分子特征
使用 Gene Expression Omnibus 的 AML 数据集进行肿瘤学临床试验并评估研究结果的稳健性
这项研究将填补目前尚无混合疗法的关键空白。
我们预计将我们的方法应用于 AML 数据将增强现有的能力。
日常临床实践中使用的风险分层系统,用于确定治疗强度和方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kellie J. Archer其他文献
Kellie J. Archer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kellie J. Archer', 18)}}的其他基金
Pretransplant comprehensive scores to predict long term graft outcomes
移植前综合评分可预测长期移植结果
- 批准号:
10679624 - 财政年份:2023
- 资助金额:
$ 25.93万 - 项目类别:
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10340087 - 财政年份:2022
- 资助金额:
$ 25.93万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9262665 - 财政年份:2017
- 资助金额:
$ 25.93万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
10203464 - 财政年份:2017
- 资助金额:
$ 25.93万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9753687 - 财政年份:2017
- 资助金额:
$ 25.93万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
9273725 - 财政年份:2012
- 资助金额:
$ 25.93万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8714054 - 财政年份:2012
- 资助金额:
$ 25.93万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8216289 - 财政年份:2012
- 资助金额:
$ 25.93万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7805045 - 财政年份:2009
- 资助金额:
$ 25.93万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7670456 - 财政年份:2008
- 资助金额:
$ 25.93万 - 项目类别:
相似海外基金
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10340087 - 财政年份:2022
- 资助金额:
$ 25.93万 - 项目类别:
Obesity, sedentary behaviors, and diet quality for prevention and early detection of early-onset colorectal neoplasia
肥胖、久坐行为和饮食质量有助于预防和早期发现早发性结直肠肿瘤
- 批准号:
10192685 - 财政年份:2020
- 资助金额:
$ 25.93万 - 项目类别:
Obesity, sedentary behaviors, and diet quality for prevention and early detection of early-onset colorectal neoplasia
肥胖、久坐行为和饮食质量有助于预防和早期发现早发性结直肠肿瘤
- 批准号:
10688157 - 财政年份:2020
- 资助金额:
$ 25.93万 - 项目类别:
Obesity, sedentary behaviors, and diet quality for prevention and early detection of early-onset colorectal neoplasia
肥胖、久坐行为和饮食质量有助于预防和早期发现早发性结直肠肿瘤
- 批准号:
10438561 - 财政年份:2020
- 资助金额:
$ 25.93万 - 项目类别:
Body composition and the obesity paradox in clear cell renal cell carcinoma
透明细胞肾细胞癌的身体成分和肥胖悖论
- 批准号:
10228024 - 财政年份:2019
- 资助金额:
$ 25.93万 - 项目类别: