Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
基本信息
- 批准号:8641014
- 负责人:
- 金额:$ 58.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchivesAreaCaringClinicalClinical DataClinical ManagementClinical TrialsComplicationComputerized Medical RecordComputersCritical CareCritical IllnessDataDatabasesDecision MakingDetectionDevelopmentElectronicsEnvironmentEvaluationEventFeedbackFundingHealth PersonnelHealthcareHospitalsImmunosuppressive AgentsIndividualInformation SystemsInpatientsIntensive Care UnitsKnowledgeLaboratoriesMachine LearningMedicalMedical ErrorsMedicineMethodologyMethodsModelingMonitorOperative Surgical ProceduresOralOutpatientsPatient CarePatientsPatternPerformancePharmaceutical PreparationsPhysiciansPlayPractice ManagementProductionReal-Time SystemsRecordsRelative (related person)ResearchResearch PersonnelSignal TransductionSolutionsStreamSystemTacrolimusTechniquesTestingTimeUnited States National Institutes of HealthWorkbasebiomedical informaticsclinical careclinical practicecomputer sciencedesignimprovedknowledge baseliver transplantationmultidisciplinaryprototypepublic health relevance
项目摘要
PROJECT SUMMARY / ABSTRACT
Timely detection of severe patient conditions or concerning events and their mitigation remains an important
problem in clinical practice. This is especially true in the critically ill patient. Typical computer-based detection
methods developed for this purpose rely on the use of clinical knowledge, such as expert-derived rules, that
are incorporated into monitoring and alerting systems. However, it is often time-consuming, costly, and difficult
to extract and implement such knowledge in existing monitoring systems. The research work in this proposal
offers computational, rather than expert-based, solutions that build alert systems from data stored in patient
data repositories, such as electronic medical records. Briefly, our approach uses advanced machine learning
algorithms to identify unusual clinical management patterns in individual patients, relative to patterns
associated with comparable patients, and raises an alert signaling this discrepancy. Our previous studies
provide support that such deviations indicate clinically important events at false alert rates below 50%, which is
very promising. We propose to further improve the new methodology, and build a real-time monitoring and
alerting system integrated with production electronic medical records. We propose an evaluation of the system
using physicians' assessment of alerts raised by our real-time system for intensive-care unit (ICU) patient
cases. The project investigators comprise a multidisciplinary team with expertise in critical care medicine,
computer science, biomedical informatics, statistical machine learning, knowledge based systems, and clinical
data repositories.
项目摘要 /摘要
及时检测严重的患者状况或有关事件及其缓解措施仍然很重要
临床实践中的问题。在重症患者中尤其如此。典型的基于计算机的检测
为此目的开发的方法取决于临床知识的使用,例如专家衍生的规则,
被整合到监视和警报系统中。但是,这通常很耗时,昂贵且困难
在现有监视系统中提取和实施此类知识。该提案中的研究工作
提供计算的解决方案,而不是基于专家的解决方案,这些解决方案从存储在患者中的数据中构建警报系统
数据存储库,例如电子病历。简而言之,我们的方法使用高级机器学习
相对于模式,识别个别患者的异常临床管理模式的算法
与可比的患者相关,并提高警报,表明这种差异。我们以前的研究
提供此类偏差表明以低于50%的错误警报率表示临床上重要事件的支持,即
非常有前途。我们建议进一步改善新方法,并建立实时监控和
与生产电子病历集成的警报系统。我们提出对系统的评估
使用医师对我们的重症监护病人(ICU)患者实时系统提出的警报的评估
案例。该项目调查人员组成了一个具有重症监护医学专业知识的多学科团队,
计算机科学,生物医学信息学,统计机器学习,基于知识的系统和临床
数据存储库。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY F. COOPER其他文献
GREGORY F. COOPER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY F. COOPER', 18)}}的其他基金
Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
- 批准号:
10705264 - 财政年份:2022
- 资助金额:
$ 58.02万 - 项目类别:
Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
- 批准号:
10502411 - 财政年份:2022
- 资助金额:
$ 58.02万 - 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
- 批准号:
10460909 - 财政年份:2021
- 资助金额:
$ 58.02万 - 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
- 批准号:
10653930 - 财政年份:2021
- 资助金额:
$ 58.02万 - 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
- 批准号:
10094371 - 财政年份:2021
- 资助金额:
$ 58.02万 - 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
- 批准号:
7860710 - 财政年份:2009
- 资助金额:
$ 58.02万 - 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
- 批准号:
8912480 - 财政年份:2009
- 资助金额:
$ 58.02万 - 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
- 批准号:
9278178 - 财政年份:2009
- 资助金额:
$ 58.02万 - 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
- 批准号:
9095389 - 财政年份:2009
- 资助金额:
$ 58.02万 - 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
- 批准号:
7634045 - 财政年份:2009
- 资助金额:
$ 58.02万 - 项目类别:
相似国自然基金
科学基金档案资料信息化管理探索与实践研究
- 批准号:
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
面向单套制的国家自然科学基金项目档案分级分类管理研究
- 批准号:J2224001
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:专项项目
科学基金档案资料信息化管理探索与实践研究
- 批准号:52242312
- 批准年份:2022
- 资助金额:10.00 万元
- 项目类别:专项项目
零信任架构下的电子健康档案动态共享研究
- 批准号:72274077
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
胶州湾河口湿地盾纤亚纲纤毛虫的多样性研究与档案资料建立
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 58.02万 - 项目类别:
BioGRID: An open resource for biological interactions and network analysis
BioGRID:生物相互作用和网络分析的开放资源
- 批准号:
10819019 - 财政年份:2023
- 资助金额:
$ 58.02万 - 项目类别:
Point-of-care diagnostic test for T. cruzi (Chagas) infection
克氏锥虫(恰加斯)感染的即时诊断测试
- 批准号:
10603665 - 财政年份:2023
- 资助金额:
$ 58.02万 - 项目类别:
Reducing the Risk and Economic burden of Recurrent stroke by improving medication adherence using a Novel SMART Pill CONTAINER, Cap, and Health Literacy Technologies
使用新型智能药丸容器、瓶盖和健康素养技术提高用药依从性,降低复发性中风的风险和经济负担
- 批准号:
10601743 - 财政年份:2023
- 资助金额:
$ 58.02万 - 项目类别:
Data Driven Background Estimation in PET Using Event Energy Information
使用事件能量信息进行 PET 中数据驱动的背景估计
- 批准号:
10644161 - 财政年份:2022
- 资助金额:
$ 58.02万 - 项目类别: