Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases

重叠暴发和新暴发疾病的自动监测

基本信息

项目摘要

Project Summary / Abstract This project will develop and evaluate new methods for automated detection and characterization of infectious respiratory diseases. The methods will be novel in their ability to detect and characterize (1) multiple, overlapping outbreaks of known diseases, which is a situation that occurs commonly, (2) an outbreak of a new, emerging disease, which can be dangerous, and (3) a combination of 1 and 2 occurring at the same time. The ability to detect a new disease early, in the context of other common outbreaks occurring, may be particularly important if the disease causes serious illness and spreads rapidly in the population. The new methods can also use a wide variety of data to perform outbreak detection and characterization, including emergency department reports, laboratory results, retail thermometer sales in the region, and local health-related tweets. These new methods will be built upon the framework of an existing Bayesian, probabilistic system, which the investigators have developed. This system takes as input data used to perform outbreak detection and characterization, and it outputs the probabilities of different possible disease outbreaks that may be occurring, as well as their characteristics, such as their probable start times and epidemiological curves. A unique aspect of the system is its ability to use data from individual patient clinical reports, such as emergency department reports. The system applies natural language processing to the reports to derive a set of symptoms, signs, and other findings. It then uses these findings and probabilistic disease models to derive a probability distribution over the diseases for each patient. For the many patients seen in the recent past, the system uses their probability distributions as evidence in detecting and characterizing disease outbreaks. The project will be evaluated using simulated data and real data from Allegheny County, Pennsylvania. It will focus on four common outbreak diseases, namely, influenza A, influenza B, respiratory syncytial virus (RSV), and adenovirus. The evaluation will examine how well the system can (1) detect and characterize multiple overlapping outbreaks of disease, (2) detect a new outbreak disease and create an accurate clinical description of it (using a leave-one-out cross validation approach), and (3) use a variety of data types to improve outbreak detection and characterization. The innovation being advanced by this research is a novel, integrated, probabilistic approach for the early and accurate detection of disease outbreaks that threaten public health. The proposed approach has significant potential to improve the information available to clinicians and public health officials, which can be expected to improve clinical and public health decision making, and ultimately to improve population health.
项目摘要 /摘要 该项目将开发并评估新方法的自动检测和表征感染性 呼吸系统疾病。这些方法将在检测和表征(1)多个的能力上是新颖的 已知疾病的爆发重叠,这种情况通常发生,(2)爆发新的, 新兴疾病可能很危险,(3)同时发生1和2的组合。这 在发生其他常见暴发的情况下,早期发现新疾病的能力尤其是 重要的是,如果该疾病引起严重疾病并在人群中迅速传播。新方法可以 还使用各种数据进行爆发检测和表征,包括紧急情况 部门报告,实验室结果,该地区的零售温度计销售以及与当地健康相关的推文。 这些新方法将建立在现有的贝叶斯,概率系统的框架上,该系统是 调查人员已经发展。该系统将用于执行爆发检测的输入数据和 表征,它输出了可能发生的不同疾病暴发的概率, 以及它们的特征,例如其可能的开始时间和流行病学曲线。一个独特的方面 该系统的功能是使用来自个体患者临床报告的数据,例如急诊室 报告。该系统将自然语言处理应用于报告,以得出一组症状,体征和 其他发现。然后,它使用这些发现和概率疾病模型来得出概率分布 每位患者的疾病。对于最近看到的许多患者,该系统使用 概率分布作为检测和表征疾病暴发的证据。 该项目将使用宾夕法尼亚州阿勒格尼县的模拟数据和真实数据进行评估。会 专注于四种常见爆发疾病,即流感,流感B,呼吸道综合病毒(RSV), 和腺病毒。评估将检查系统能够(1)检测和表征多个系统的状况如何 重叠的疾病暴发,(2)发现一种新的暴发疾病并创建准确的临床 它的描述(使用保留的交叉验证方法),(3)使用多种数据类型 改善爆发检测和表征。 这项研究提出的创新是一种新颖的,综合的,概率的方法,用于早期和 对威胁公共卫生的疾病暴发的准确检测。提出的方法具有重要的 有可能改善临床医生和公共卫生官员可用信息的潜力,可以预期 改善临床和公共卫生决策,并最终改善人口健康。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GREGORY F. COOPER其他文献

GREGORY F. COOPER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GREGORY F. COOPER', 18)}}的其他基金

Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
  • 批准号:
    10705264
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
Individualized Prediction of Treatment Effects Using Data from Both Embedded Clinical Trials and Electronic Health Records
使用嵌入式临床试验和电子健康记录的数据个性化预测治疗效果
  • 批准号:
    10502411
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
  • 批准号:
    10460909
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
  • 批准号:
    10094371
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
  • 批准号:
    7860710
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    8912480
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    8641014
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    9278178
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:
Real-time detection of deviations in clinical care in ICU data streams
实时检测ICU数据流中临床护理的偏差
  • 批准号:
    9095389
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:
Predicting Patient Outcomes from Clinical and Genome-Wide Data
从临床和全基因组数据预测患者结果
  • 批准号:
    7634045
  • 财政年份:
    2009
  • 资助金额:
    $ 33.79万
  • 项目类别:

相似国自然基金

肝胆肿瘤治疗性溶瘤腺病毒疫苗的研制及其临床前应用性探索
  • 批准号:
    82303776
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于sIgA的V(D)J结构多样性探索腺病毒载体鼻喷新冠奥密克戎疫苗诱导的呼吸道粘膜免疫原性特征
  • 批准号:
    82302607
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
禽腺病毒血清11型反向遗传平台的建立与毒株间致病性差异机制探究
  • 批准号:
    32372997
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
PD-1/PD-L1信号促CD21-B细胞BCR髓外二次编辑降低自身反应性在儿童腺病毒肺炎中的作用机制研究
  • 批准号:
    82370015
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
CD46和DSG2双受体在人B组腺病毒感染与致病中的协同作用和机制研究
  • 批准号:
    32370155
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Validation and Improvement of ISPRI-HCP: An Innovative Platform for Immunogenicity Risk Assessment of Process-related Protein Impurities
ISPRI-HCP 的验证和改进:工艺相关蛋白质杂质免疫原性风险评估的创新平台
  • 批准号:
    10603538
  • 财政年份:
    2023
  • 资助金额:
    $ 33.79万
  • 项目类别:
Characterization of the cervical fungal communities modulating high-risk HPV infections in Hispanic Women Living with HIV (WLWH)
调节西班牙裔女性 HIV 感染者 (WLWH) 高危 HPV 感染的宫颈真菌群落特征
  • 批准号:
    10533625
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
Discovering Extracellular Modulators of Lung Fibrogenesis by Profiling Newly Synthesized Extracellular Matrix
通过分析新合成的细胞外基质发现肺纤维生成的细胞外调节剂
  • 批准号:
    10683787
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
  • 批准号:
    10460909
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Automated Surveillance of Overlapping Outbreaks and New Outbreak Diseases
重叠暴发和新暴发疾病的自动监测
  • 批准号:
    10094371
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了