A New Paradigm for Illness Monitoring and Relapse Prevention in Schizophrenia

精神分裂症疾病监测和复发预防的新范式

基本信息

  • 批准号:
    8743296
  • 负责人:
  • 金额:
    $ 32.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-26 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Schizophrenia is a severe psychiatric disorder that is associated with staggeringly high individual and societal costs. Although the illness is typically chronic, it is not static, and the majority of people with schizophrenia vacillate between full or partial remission and episodes of symptomatic relapse. Relapses increase one's risk for major problems including homelessness, incarceration, victimization, and suicide. Moreover, patients with schizophrenia who relapse are three to four times more costly than those who do not. The goal of the proposed project is to develop and evaluate a novel paradigm for illness monitoring, detection of early warning signs, and relapse prevention in schizophrenia. Our interdisciplinary team of clinical researchers and computer scientists proposes to develop a mobile system that uses smartphone-embedded sensors (i.e. microphone, accelerometer, GPS, light sensor) coupled with computerized self-reports, to track a range of behaviors (i.e. paralinguistic aspect of speech, physical activity, location, sleep, mood, psychotic symptoms) that are relevant to relapse in schizophrenia. Using machine learning techniques, the system will leverage behavioral data and patient self-reported clinical updates to generate personalized early warning models. The models will evolve with use of the system over time, focusing on variability from one's typical behavioral patterns to calibrate a unique patient relapse signature. Treatment teams will be informed about patients' clinical status via secure website. When the mobile system "flags" trends that are consistent with one's relapse signature, it will trigger patient functions and provider functions (i.e. real-time notification, prompts to initiate contact, time-sensitive treatments) to help prevent progression to full psychotic relapse. In Phase 1 of the project, we will integrate multi-modal sensor, ecological momentary assessment, and machine learning technologies into a unified smartphone system that will be tested and refined in laboratory settings. In Phase 2, we will conduct field trials with individuals with schizophrenia i real-world conditions to identify and resolve technical and mechanical problems, adapt the software, and maximize system usability. In Phase 3, we will conduct a randomized 12- month trial of the monitoring and prevention system compared to treatment as usual in 150 outpatients with schizophrenia that are at high-risk for relapse. If successful, our proposed system can be rapidly made available to a population that is in dire need of more effective resources, and can serve as a template for mobile monitoring and treatment systems for a range of clinical conditions with an episodic nature.
描述(由申请人提供):精神分裂症是一种严重的精神疾病,与高昂的个人和社会成本有关。尽管这种疾病通常是慢性的,但它不是静态的,大多数精神分裂症患者在全部或部分缓解和有症状复发的发作之间进行了液态。复发增加了一个人面临重大问题的风险,包括无家可归,监禁,受害和自杀。此外,复发的精神分裂症患者的成本是那些没有的患者的成本三到四倍。拟议项目的目的是开发和评估用于疾病监测,预警信号的检测和精神分裂症预防复发的新型范式。 Our interdisciplinary team of clinical researchers and computer scientists proposes to develop a mobile system that uses smartphone-embedded sensors (i.e. microphone, accelerometer, GPS, light sensor) coupled with computerized self-reports, to track a range of behaviors (i.e. paralinguistic aspect of speech, physical activity, location, sleep, mood, psychotic symptoms) that are relevant to relapse in schizophrenia.使用机器学习技术,该系统将利用行为数据和患者自我报告的临床更新来生成个性化的预警模型。随着时间的推移,模​​型将随着系统的使用而发展,重点是从一个人的典型行为模式来校准独特的患者复发签名。治疗团队将通过安全网站告知患者的临床状况。当移动系统“标志”趋势与一个人的复发签名一致时,它将触发患者功能和提供者功能(即实时通知,提示启动接触,时间敏感治疗),以帮助防止进展到充分的精神病性复发。在该项目的第一阶段中,我们将将多模式传感器,生态瞬时评估和机器学习技术集成到统一的智能手机系统中,该系统将在实验室环境中进行测试和完善。在第2阶段,我们将与精神分裂症I现实世界中的个人进行现场试验,以识别和解决技术和机械问题,适应软件并最大程度地提高系统可用性。在第3阶段,我们将进行监测和预防系统的12个月随机试验,与往常一样,在150名患有高危的精神分裂症的门诊患者中,以进行复发。如果成功的话,我们提出的系统可以迅速提供给迫切需要更有效资源的人群,并且可以作为具有情节性质的一系列临床状况的移动监控和治疗系统的模板。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dror Ben-Zeev其他文献

Dror Ben-Zeev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dror Ben-Zeev', 18)}}的其他基金

Combining mHealth and nurse-delivered care to improve the outcomes of people with seriousmental illness in West Africa
将移动医疗与护士提供的护理相结合,改善西非严重精神疾病患者的治疗结果
  • 批准号:
    10533529
  • 财政年份:
    2022
  • 资助金额:
    $ 32.41万
  • 项目类别:
Combining mHealth and nurse-delivered care to improve the outcomes of people with seriousmental illness in West Africa
将移动医疗与护士提供的护理相结合,改善西非严重精神疾病患者的治疗结果
  • 批准号:
    10676949
  • 财政年份:
    2022
  • 资助金额:
    $ 32.41万
  • 项目类别:
Implementing mHealth for Schizophrenia in Community Mental Health Settings
在社区心理健康环境中实施精神分裂症移动医疗
  • 批准号:
    10533730
  • 财政年份:
    2019
  • 资助金额:
    $ 32.41万
  • 项目类别:
Implementing mHealth for Schizophrenia in Community Mental Health Settings
在社区心理健康环境中实施精神分裂症移动医疗
  • 批准号:
    10063048
  • 财政年份:
    2019
  • 资助金额:
    $ 32.41万
  • 项目类别:
Implementing mHealth for Schizophrenia in Community Mental Health Settings
在社区心理健康环境中实施精神分裂症移动医疗
  • 批准号:
    10311085
  • 财政年份:
    2019
  • 资助金额:
    $ 32.41万
  • 项目类别:
Mobile RDoC: Using Smartphone Technology to Understand Auditory Verbal Hallucinations
移动 RDoC:使用智能手机技术理解听觉言语幻觉
  • 批准号:
    9899714
  • 财政年份:
    2017
  • 资助金额:
    $ 32.41万
  • 项目类别:
Mobile RDoC: Using Smartphone Technology to Understand Auditory Verbal Hallucinations
移动 RDoC:使用智能手机技术理解听觉言语幻觉
  • 批准号:
    9924681
  • 财政年份:
    2017
  • 资助金额:
    $ 32.41万
  • 项目类别:
A New Paradigm for Illness Monitoring and Relapse Prevention in Schizophrenia
精神分裂症疾病监测和复发预防的新范式
  • 批准号:
    8640521
  • 财政年份:
    2013
  • 资助金额:
    $ 32.41万
  • 项目类别:
Development of a Mobile System for Self-management of Schizophrenia (SOS)
开发精神分裂症自我管理移动系统(SOS)
  • 批准号:
    8488042
  • 财政年份:
    2013
  • 资助金额:
    $ 32.41万
  • 项目类别:
A New Paradigm for Illness Monitoring and Relapse Prevention in Schizophrenia
精神分裂症疾病监测和复发预防的新范式
  • 批准号:
    9119612
  • 财政年份:
    2013
  • 资助金额:
    $ 32.41万
  • 项目类别:

相似国自然基金

用于急性出血控制的硅酸钙复合海绵的构建及其促凝血性能和机制研究
  • 批准号:
    32301097
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代谢工程化MSC胞外囊泡靶向调控巨噬细胞线粒体动力学改善急性肾损伤的作用及机制研究
  • 批准号:
    32371426
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
DUSP2介导自噬调控气管上皮细胞炎症在急性肺损伤中的机制研究
  • 批准号:
    82360379
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
超声射频信号神经回路策略模型定量肌肉脂肪化评估慢加急性肝衰竭预后
  • 批准号:
    82302221
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 32.41万
  • 项目类别:
Identification of gene variants mediating the behavioral and physiological response to THC
鉴定介导 THC 行为和生理反应的基因变异
  • 批准号:
    10660808
  • 财政年份:
    2023
  • 资助金额:
    $ 32.41万
  • 项目类别:
Kinetochore Assembly and Regulation
着丝粒组装和调控
  • 批准号:
    10717202
  • 财政年份:
    2023
  • 资助金额:
    $ 32.41万
  • 项目类别:
Determining medications associated with drug-induced pancreatic injury through novel pharmacoepidemiology techniques that assess causation
通过评估因果关系的新型药物流行病学技术确定与药物引起的胰腺损伤相关的药物
  • 批准号:
    10638247
  • 财政年份:
    2023
  • 资助金额:
    $ 32.41万
  • 项目类别:
TIER-PALLIATIVE CARE: A population-based care delivery model to match evolving patient needs and palliative care services for community-based patients with heart failure or cancer
分级姑息治疗:基于人群的护理提供模式,以满足不断变化的患者需求,并为社区心力衰竭或癌症患者提供姑息治疗服务
  • 批准号:
    10880994
  • 财政年份:
    2023
  • 资助金额:
    $ 32.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了