Molecular Mechanisms of Receptor and Channel Function
受体和通道功能的分子机制
基本信息
- 批准号:8536389
- 负责人:
- 金额:$ 42.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-04-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAdsorptionAffectAgonistAnalgesicsArthritisAsthmaBindingBiochemicalBladderCalciumCapsaicinCellsChemicalsChildChronic inflammatory painClinicalCouplingCysteineDNA Sequence RearrangementDetectionDevelopmentDiseaseEnvironmentEsthesiaExtended FamilyExtracellular DomainFamilyFluorescence Resonance Energy TransferFluorometryGeneticGoalsGrowth ConesHeatingHyperalgesiaHypersensitivityIn VitroInflammationInflammatoryInjuryIon ChannelIonsIrritable Bowel SyndromeKineticsLipidsLiposomesMeasuresMediatingMembraneMethodsModelingMolecularMovementNeurogenic InflammationNeuronsNeuropeptidesNociceptionNociceptorsOocytesOrofacial PainPainPharmaceutical PreparationsPharmacologyPhosphatidylinositol 4,5-DiphosphatePhospholipidsPhysiologicalPhysiological ProcessesPhysiologyPlayPositioning AttributePotassium ChannelProcessPropertyProteinsProtonsPurinesRegulationRelative (related person)ResolutionRoleSensorySignal TransductionSpidersStimulusStructureStructure-Activity RelationshipSyndromeSystemTRP channelTRPV1 geneTechniquesTemperatureTherapeuticTherapeutic AgentsTissuesToxinWorkXenopus oocytebasebody systemcapsaicin receptorchronic paindesigndriving forceextracellularinflammatory painkeratinocytememberneuronal growthneurotrophic factornovelposterspublic health relevancepurinereceptorresearch studyresponsesensorsomatosensorysynthetic proteintherapeutic developmentthree dimensional structurevoltagevoltage clamp
项目摘要
DESCRIPTION (provided by applicant): Nociception is the process whereby primary afferent somatosensory neurons recognize and respond to noxious stimuli, resulting in pain and neurogenic inflammation. Members of the TRP ion channel family play important roles in nociception and pain by functioning as sensors for a variety of noxious stimuli, including heat, cold, and inflammatory agents. More broadly, genetic studies have highlighted the importance of these and other TRP channel subtypes in processes ranging from calcium adsorption to neuronal growth cone guidance, keratinocyte development, and numerous aspects of sensory transduction. Thus, understanding how these channels respond to physiological stimuli and drugs is of direct clinical and therapeutic relevance to disorders that affect virtually every majo organ system in the body. This proposal is focused primarily on understanding the structure and biophysical properties of the capsaicin- and heat-activated receptor, TRPV1 - perhaps the best-characterized member of the mammalian TRP channel family. Its widely validated role in pain physiology, together with the availability of well characterized pharmacological agents (natural and synthetic), make it a 'poster child' for elucidating basic principles underlying TRP channel pharmacology, structure, and regulation. The studies proposed here are aimed at broadening our understanding of the structural and biophysical principles whereby TRPV1 and related channels are activated or modulated by chemical or physical stimuli. The specific aims are to (i) analyze intrinsic sensitivity of TRPV1 to heat, phospholipids, and other agents in a defined environment consisting of purified channel protein and synthetic lipids; (ii) exploit purified, functional TRPV1 protein for in vitro spectroscopic studies to examine stimulus-evoked conformational movements, and (iii) use voltage-clamp fluorometry to assess the dynamics of stimulus-evoked conformational rearrangements of TRPV1 in cells. Together, these aims will address unresolved issues concerning TRP channel function and structure while laying important groundwork for the long-term goal of obtaining three-dimensional structures of TRPV1 or other TRP channels - which represents a logical and essential next step for the field. Such information is key to the rational development of therapeutic agents that target chronic inflammatory pain syndromes (e.g. arthritis, irritable bowel syndrome, and asthma) and other disorders involving TRP channels.
描述(由申请人提供):伤害感受是主要传入的体感神经元识别并应对有害刺激的过程,从而导致疼痛和神经发生炎症。 TRP离子通道家族的成员通过充当各种有害刺激的传感器(包括热,冷和炎症剂)来发挥重要作用。从更广泛的角度来看,遗传研究强调了这些和其他TRP通道亚型在从钙吸附到神经元生长锥指导,角质形成细胞的发展以及感觉传递的许多方面的过程中的重要性。因此,了解这些通道对生理刺激和药物的反应如何与几乎影响体内每个Majo器官系统的疾病的疾病具有直接的临床和治疗相关性。该提案主要集中在理解辣椒素和热激活受体TRPV1的结构和生物物理特性上 - 也许是哺乳动物TRP通道家族中最佳特征的成员。它在疼痛生理学中得到了广泛验证的作用,以及良好表征的药理学剂(自然和合成)的可用性,使其成为阐明TRP通道药理学,结构和调节基础基本原理的“海报孩子”。此处提出的研究旨在扩大我们对TRPV1和相关通道的结构和生物物理原理的理解,并通过化学或物理刺激激活或调节。具体的目的是(i)分析TRPV1对加热,磷脂和其他代理的固有灵敏度,这些定义环境包括纯化的通道蛋白和合成脂质; (ii)利用纯化的功能性TRPV1蛋白进行体外光谱研究来检查刺激诱发的构象运动,并且(iii)使用电压钳荧光测定法来评估细胞中TRPV1的刺激诱发构型重排的动力学。这些目标共同解决了有关TRP通道功能和结构的未解决问题,同时为获得TRPV1或其他TRP通道的三维结构的长期目标奠定了重要的基础 - 这代表了该领域的逻辑且必不可少的下一步。这些信息是针对慢性炎症综合症(例如关节炎,肠易激综合征和哮喘)以及其他涉及TRP通道的治疗剂的合理发展的关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Julius其他文献
David Julius的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Julius', 18)}}的其他基金
Natural products as probes of the pain pathway
天然产物作为疼痛通路的探针
- 批准号:
10318584 - 财政年份:2017
- 资助金额:
$ 42.85万 - 项目类别:
Natural products as probes of the pain pathway
天然产物作为疼痛通路的探针
- 批准号:
10054206 - 财政年份:2017
- 资助金额:
$ 42.85万 - 项目类别:
Natural products as probes of the pain pathway
天然产物作为疼痛通路的探针
- 批准号:
10548116 - 财政年份:2017
- 资助金额:
$ 42.85万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别: