Molecular Mechanisms of Receptor and Channel Function
受体和通道功能的分子机制
基本信息
- 批准号:8690173
- 负责人:
- 金额:$ 44.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-04-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAdsorptionAffectAgonistAnalgesicsArthritisAsthmaBindingBiochemicalBiophysical ProcessBiophysicsBladderCalciumCapsaicinCellsChemicalsChildChronic inflammatory painClinicalCouplingCysteineDNA Sequence RearrangementDetectionDevelopmentDiseaseEnvironmentEsthesiaExtended FamilyExtracellular DomainFamilyFluorescence Resonance Energy TransferFluorometryGeneticGoalsGrowth ConesHeatingHyperalgesiaHypersensitivityIn VitroInflammationInflammatoryInjuryIon ChannelIonsIrritable Bowel SyndromeKineticsLipidsLiposomesMeasuresMediatingMembraneMethodsModelingMolecularMovementNeurogenic InflammationNeuronsNeuropeptidesNociceptionNociceptorsOocytesOrofacial PainPainPharmaceutical PreparationsPharmacologyPhosphatidylinositol 4,5-DiphosphatePhospholipidsPhysiologicalPhysiological ProcessesPhysiologyPlayPositioning AttributePotassium ChannelProcessProteinsProtonsPurinesRegulationRelative (related person)ResolutionRoleSensorySignal TransductionSpidersStimulusStructureStructure-Activity RelationshipSyndromeSystemTRP channelTRPV1 geneTechniquesTemperatureTherapeuticTherapeutic AgentsTissuesToxinWorkXenopus oocytebasebiophysical propertiesbiophysical techniquesbody systemcapsaicin receptorchronic paindesigndriving forceextracellularinflammatory painkeratinocytememberneuronal growthneurotrophic factornovelposterspublic health relevancepurinereceptorresearch studyresponsesensorsomatosensorysynthetic proteintherapeutic developmentthree dimensional structurevoltagevoltage clamp
项目摘要
DESCRIPTION (provided by applicant): Nociception is the process whereby primary afferent somatosensory neurons recognize and respond to noxious stimuli, resulting in pain and neurogenic inflammation. Members of the TRP ion channel family play important roles in nociception and pain by functioning as sensors for a variety of noxious stimuli, including heat, cold, and inflammatory agents. More broadly, genetic studies have highlighted the importance of these and other TRP channel subtypes in processes ranging from calcium adsorption to neuronal growth cone guidance, keratinocyte development, and numerous aspects of sensory transduction. Thus, understanding how these channels respond to physiological stimuli and drugs is of direct clinical and therapeutic relevance to disorders that affect virtually every majo organ system in the body. This proposal is focused primarily on understanding the structure and biophysical properties of the capsaicin- and heat-activated receptor, TRPV1 - perhaps the best-characterized member of the mammalian TRP channel family. Its widely validated role in pain physiology, together with the availability of well characterized pharmacological agents (natural and synthetic), make it a 'poster child' for elucidating basic principles underlying TRP channel pharmacology, structure, and regulation. The studies proposed here are aimed at broadening our understanding of the structural and biophysical principles whereby TRPV1 and related channels are activated or modulated by chemical or physical stimuli. The specific aims are to (i) analyze intrinsic sensitivity of TRPV1 to heat, phospholipids, and other agents in a defined environment consisting of purified channel protein and synthetic lipids; (ii) exploit purified, functional TRPV1 protein for in vitro spectroscopic studies to examine stimulus-evoked conformational movements, and (iii) use voltage-clamp fluorometry to assess the dynamics of stimulus-evoked conformational rearrangements of TRPV1 in cells. Together, these aims will address unresolved issues concerning TRP channel function and structure while laying important groundwork for the long-term goal of obtaining three-dimensional structures of TRPV1 or other TRP channels - which represents a logical and essential next step for the field. Such information is key to the rational development of therapeutic agents that target chronic inflammatory pain syndromes (e.g. arthritis, irritable bowel syndrome, and asthma) and other disorders involving TRP channels.
描述(由申请人提供):伤害感受是初级传入体感神经元识别并响应有害刺激的过程,导致疼痛和神经源性炎症。 TRP 离子通道家族的成员通过充当各种有害刺激(包括热、冷和炎症因子)的传感器,在伤害感受和疼痛中发挥重要作用。更广泛地说,遗传学研究强调了这些和其他 TRP 通道亚型在从钙吸附到神经元生长锥引导、角质形成细胞发育以及感觉转导的许多方面的过程中的重要性。因此,了解这些通道如何响应生理刺激和药物对于影响身体几乎每个主要器官系统的疾病具有直接的临床和治疗相关性。该提案主要侧重于了解辣椒素和热激活受体 TRPV1 的结构和生物物理特性,TRPV1 可能是哺乳动物 TRP 通道家族中最具特征的成员。它在疼痛生理学中的作用得到了广泛验证,再加上特性良好的药理制剂(天然和合成)的可用性,使其成为阐明 TRP 通道药理学、结构和调节基本原理的“典范”。这里提出的研究旨在扩大我们对化学或物理刺激激活或调节 TRPV1 和相关通道的结构和生物物理原理的理解。具体目标是 (i) 在由纯化通道蛋白和合成脂质组成的特定环境中分析 TRPV1 对热、磷脂和其他物质的内在敏感性; (ii) 利用纯化的功能性 TRPV1 蛋白进行体外光谱研究,以检查刺激诱发的构象运动,以及 (iii) 使用电压钳荧光测定法评估细胞中刺激诱发的 TRPV1 构象重排的动态。这些目标将共同解决有关 TRP 通道功能和结构的未解决问题,同时为获得 TRPV1 或其他 TRP 通道的三维结构的长期目标奠定重要基础 - 这代表了该领域合乎逻辑且重要的下一步。这些信息对于合理开发针对慢性炎症疼痛综合征(例如关节炎、肠易激综合征和哮喘)和涉及 TRP 通道的其他疾病的治疗药物至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Julius其他文献
David Julius的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Julius', 18)}}的其他基金
Natural products as probes of the pain pathway
天然产物作为疼痛通路的探针
- 批准号:
10318584 - 财政年份:2017
- 资助金额:
$ 44.23万 - 项目类别:
Natural products as probes of the pain pathway
天然产物作为疼痛通路的探针
- 批准号:
10054206 - 财政年份:2017
- 资助金额:
$ 44.23万 - 项目类别:
Natural products as probes of the pain pathway
天然产物作为疼痛通路的探针
- 批准号:
10548116 - 财政年份:2017
- 资助金额:
$ 44.23万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 44.23万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 44.23万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 44.23万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 44.23万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 44.23万 - 项目类别: