Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
基本信息
- 批准号:8651955
- 负责人:
- 金额:$ 33.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-15 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdenosineAstrocytesBlood VesselsBlood flowBrainBrain regionCerebrovascular CirculationCouplesDiseaseDopamineDrug TargetingDrug abuseElectric StimulationEnergy SupplyFrequenciesGlutamatesGoalsGreen Fluorescent ProteinsHuntington DiseaseIschemiaKnowledgeLabelLeadLong-Term EffectsLong-Term PotentiationMeasuresMental DepressionMethodsMicroelectrodesMissionMonitorNatureNeuromodulatorNeuronal PlasticityNeuronsNeurotransmittersOrganismOutcomeOxygenPainParkinson DiseasePharmaceutical PreparationsProcessPublic HealthPurinergic P1 ReceptorsRattusRegulationResearchResolutionSignal TransductionSliceSourceStimulusSystemTechnologyTestingTherapeuticThinkingTimeaddictionadenosine receptor activationbaseburden of illnessextracellularin vivoinnovationinsightinstrumentationnervous system disorderneuroregulationneurotransmissionnovelreceptorreceptor functionresearch studyresponsesensortreatment strategy
项目摘要
DESCRIPTION (provided by applicant): Adenosine is a neuromodulator that regulates neurotransmission and cerebral blood flow but the nature of adenosine signaling in the brain is not well characterized. Most studies have described long-term effects of activation of adenosine receptors or changes in adenosine basal levels. Recently, rapid changes in adenosine have recently been discovered but the function of these transient changes is not known. The long-term goal of this lab is to develop new microelectrode methods to understand the rapid dynamics of neuromodulation in the brain. The objective of this project is to investigate the formation and function of transient adenosine signaling. This research is innovative because it challenges the paradigm that neuromodulation by adenosine is slow and advances technology by employing novel electrochemical sensors that overcome critical instrumentation barriers of slow temporal resolution and low sensitivity. The central hypothesis is that transient adenosine release occurs throughout the brain, is regulated by adenosine receptors, and functions to modulate neurotransmission and blood flow on a rapid time scale. This hypothesis will be tested with three Aims. In Aim 1, electrically-stimulated adenosine release will be characterized in multiple brain regions. Pharmacological experiments will be performed in brain slices to test the mechanism of adenosine formation and the cellular sources in each region. In Aim 2, spontaneous adenosine transients will be studied in anesthetized rats. These transients occur without drugs but are more frequent after administration of an A1 receptor antagonist. This study will provide a better understanding of how adenosine receptors regulate transient adenosine release. The goal of Aim 3 is to determine the function of transient adenosine release. The two hypotheses are that adenosine modulates neurotransmission and blood flow. The effect of exogenously applied adenosine on dopamine neurotransmission will be tested in brain slices. In addition, the effect of transient adenosine release on blood flow will be studied n vivo. This research will result in a better understanding of the formation and function of transien adenosine release. Adenosine based therapeutics have been proposed as possible treatments for neurological diseases such as pain, Parkinson disease, Huntington's disease, and drug abuse. New insight into the time course of neuromodulation could lead to better manipulation of transient adenosine changes to mitigate diseases caused by impaired neurotransmission.
描述(由申请人提供):腺苷是一种神经调节剂,可调节神经传递和脑血流量,但脑中腺苷信号传导的性质尚未得到很好的特征。大多数研究都描述了腺苷受体激活或腺苷基础水平变化的长期影响。最近,最近发现了腺苷的快速变化,但是这些瞬时变化的功能尚不清楚。该实验室的长期目标是开发新的微电极方法,以了解大脑中神经调节的快速动力学。该项目的目的是研究瞬态腺苷信号传导的形成和功能。这项研究具有创新性,因为它挑战了腺苷的神经调节速度缓慢,并且通过采用新型的电化学传感器来推进技术,从而克服了缓慢的时间分辨率和低灵敏度的关键仪器障碍。中心假设是瞬时腺苷释放发生在整个大脑中,受腺苷受体的调节,以及在快速时间尺度上调节神经传递和血液流动的功能。该假设将以三个目标进行检验。在AIM 1中,将在多个大脑区域进行电刺激的腺苷释放。药理学实验将在大脑切片中进行,以测试每个区域中腺苷形成和细胞源的机制。在AIM 2中,将在麻醉大鼠中研究自发的腺苷瞬变。这些瞬态发生没有药物,但在给药A1受体拮抗剂后更为频繁。这项研究将更好地了解腺苷受体如何调节瞬态腺苷的释放。 AIM 3的目的是确定瞬时腺苷释放的功能。这两个假设是腺苷调节神经传递和血流。外源施用腺苷对多巴胺神经传递的影响将在脑切片中进行测试。另外,将研究瞬时腺苷对血流的影响。这项研究将使人们更好地了解跨性别腺苷释放的形成和功能。已经提出了基于腺苷的治疗剂,以作为疼痛,帕金森病,亨廷顿氏病和药物滥用等神经系统疾病的可能治疗。对神经调节时间过程的新见解可能会导致对瞬时腺苷变化对减轻神经传递造成的疾病的瞬间变化的操纵。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
B. JILL VENTON其他文献
B. JILL VENTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('B. JILL VENTON', 18)}}的其他基金
Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
- 批准号:
10538604 - 财政年份:2022
- 资助金额:
$ 33.46万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10522260 - 财政年份:2022
- 资助金额:
$ 33.46万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10656510 - 财政年份:2022
- 资助金额:
$ 33.46万 - 项目类别:
Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
- 批准号:
10365275 - 财政年份:2022
- 资助金额:
$ 33.46万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
9889960 - 财政年份:2018
- 资助金额:
$ 33.46万 - 项目类别:
Carbon nanotube fiber and yarn microelectrodes for high temporal resolution measu
用于高时间分辨率测量的碳纳米管纤维和纱线微电极
- 批准号:
8701642 - 财政年份:2014
- 资助金额:
$ 33.46万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8387636 - 财政年份:2012
- 资助金额:
$ 33.46万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8469587 - 财政年份:2012
- 资助金额:
$ 33.46万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8828811 - 财政年份:2012
- 资助金额:
$ 33.46万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
9043204 - 财政年份:2012
- 资助金额:
$ 33.46万 - 项目类别:
相似国自然基金
JAK/STAT3调控星形胶质细胞表型在急性缺血性脑小血管病白质损伤中的作用和机制
- 批准号:82301661
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经细胞—星形胶质细胞间EphA4交互:电针智三针调控突触可塑性改善血管性痴呆学习记忆的机制
- 批准号:82360873
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
基于星形胶质细胞介导Th17/Treg免疫平衡探讨电针调控缺血性脑卒中神经血管耦联的机制
- 批准号:82305361
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAI3抑制脑缺血后反应性星形胶质细胞向C3+亚群转化保护神经血管单元的机制研究
- 批准号:82371336
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
NCAM通过DNMT1介导的星形胶质细胞DNA甲基化促进神经血管偶联的机制研究
- 批准号:82301344
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 33.46万 - 项目类别:
Astrocyte regulation of cerebral blood flow during hypoglycemia
低血糖期间星形胶质细胞对脑血流的调节
- 批准号:
10518803 - 财政年份:2022
- 资助金额:
$ 33.46万 - 项目类别:
Astrocyte regulation of cerebral blood flow during hypoglycemia
低血糖期间星形胶质细胞对脑血流的调节
- 批准号:
10644005 - 财政年份:2022
- 资助金额:
$ 33.46万 - 项目类别:
Investigating Neural Processing of Cerebrovascular Dynamics via Calcium Imaging of Vascular Cells and Neurons, and by Optogenetic Vascular Pertubation, In Vivo
通过血管细胞和神经元的钙成像以及体内光遗传学血管微管研究脑血管动力学的神经处理
- 批准号:
10458534 - 财政年份:2020
- 资助金额:
$ 33.46万 - 项目类别:
Investigating Neural Processing of Cerebrovascular Dynamics via Calcium Imaging of Vascular Cells and Neurons, and by Optogenetic Vascular Pertubation, In Vivo
通过血管细胞和神经元的钙成像以及体内光遗传学血管微管研究脑血管动力学的神经处理
- 批准号:
10223241 - 财政年份:2020
- 资助金额:
$ 33.46万 - 项目类别: