Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
基本信息
- 批准号:10365275
- 负责人:
- 金额:$ 62.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAdenosineAnimal ModelBiologicalBrainCalciumCalcium SignalingCellsColorDetectionDevelopmentDiffuseDiseaseDisease modelDopamineElectrodesEventFiberFutureGeneticGlutamatesGoalsIschemiaKnowledgeMeasurementMeasuresMediatingMethodsMicroelectrodesMonitorMusNatureNeuromodulatorNeuronsNeurotransmittersParkinson DiseasePeriodicityPhasePhotometryPlayReaction TimeRegulationResearchResearch PersonnelResolutionRoleScanningSignal TransductionSliceStrokeTechniquesTechnologyTestingTherapeuticTherapeutic UsesTimeTraumatic Brain InjuryUniversitiesVirginiaWorkanalytical toolbasecarbon fiberdesignin vivoinsightneurochemistryneuroprotectionneuroregulationneurotransmissionnew technologyreal time monitoringreceptorsensortherapy developmenttool
项目摘要
PROJECT SUMMARY
What is the role of adenosine as a rapid modulator of neurotransmission and how can we harness its power for
potential therapeutic use? To answer questions such as these, we need analytical tools that can measure
multiple neurochemicals simultaneously with high temporal and spatial resolution. Our lab pioneered fast-scan
cyclic voltammetry (FSCV) for adenosine, and discovered spontaneous, transient adenosine signaling that lasts
only a few seconds. However, the range and effects of rapid adenosine neuromodulation are not well understood.
Genetically-encoded sensors have recently been developed for neurotransmitter and calcium detection that offer
high sensitivity, selectivity, and spatial resolution. While they can monitor a wide variety of neurochemicals, and
not just electroactive molecules, there are still limited colors to detect different analytes. FSCV combined with
genetically-encoded sensors would be advantageous to detect the neuromodulator adenosine and measure its
downstream effects on dopamine and glutamate neurotransmission, as well as neuronal activity. The long-term
goal of my lab is to develop new tools for monitoring real-time neuromodulation in the brain. The goal of this
project is to develop multiplexed tools to understand neurochemical interactions and apply these tools to
understand adenosine modulation of glutamate, dopamine, and calcium. The central hypothesis is that rapid
adenosine release provides transient, but spatially localized, modulation of neurotransmitters in the brain. In the
first Aim, we will develop multichannel FSCV, with an array of four electrodes, to determine how far adenosine
diffuses in brain slices and the range of its neuromodulatory effects on dopamine release. In the second Aim,
we will combine FSCV with genetically-encoded fluorescent sensors to probe the spatial and temporal profile of
adenosine (measured with FSCV) modulation of dopamine (measured with GRABDA) or glutamate (measured
with iGluSnFR). In the third Aim, we will combine multichannel FSCV and in vivo fiber photometry measurements
of genetically-encoded sensors. We will demonstrate in vivo detection of adenosine, dopamine, and calcium
changes to probe adenosine neuromodulation of neurotransmission and neuronal activity simultaneously. This
research is significant because it develops tools that are broadly applicable for multiplexing neurotransmitter
and neuromodulator measurements, harnessing the combined strengths of FSCV and genetically-encoded
sensors. It is also significant because multiplexed tools will provide an unprecedented picture of the temporal
and spatial dynamics of adenosine neuromodulation. The biological impact is understanding the rapid and local
nature of adenosine neuromodulation, which is important for designing adenosine-based therapeutics for
diseases such as Parkinson’s, ischemia, or traumatic brain injury where adenosine could be neuroprotective.
The multiplexed tools could be applied to monitoring many other neurochemical interactions, in brain slices or in
vivo, and will advance the field of neurochemical monitoring beyond one neurochemical at a time sensing.
项目摘要
腺苷作为神经传递的快速调节剂的作用是什么?我们如何利用其力量
潜在的治疗用途?要回答此类问题,我们需要可以测量的分析工具
多种神经化学物质仅具有高临时和空间分辨率。我们的实验室开创性的快速扫描
腺苷的环状伏安法(FSCV),并发现了持续的瞬时腺苷信号
只有几秒钟。但是,尚不清楚快速腺苷神经调节的范围和影响。
最近已经开发了用于神经递质和钙检测的遗传编码传感器
高灵敏度,选择性和空间分辨率。虽然他们可以监视各种各样的神经化学物质,并且
不仅是电活性分子,仍然有限的颜色可以检测不同的分析物。 FSCV与
遗传编码的传感器将有利于检测神经调节剂并测量其
下游对多巴胺和谷氨酸神经传递以及神经元活性的影响。长期
我的实验室的目标是开发用于监测大脑实时神经调节的新工具。目标的目标
项目是开发多路复用工具来了解神经化学相互作用,并将这些工具应用于
了解谷氨酸,多巴胺和钙的腺苷调节。中心假设是快速
腺苷释放提供了瞬时的,但在空间定位的大脑中神经递质的调节。在
首先,我们将使用四个电子阵列开发多通道FSCV,以确定腺苷多远
脑切片的扩散及其神经调节对多巴胺释放的影响范围。在第二个目标中
我们将将FSCV与一般编码的荧光传感器相结合,以探测
多巴胺(用grabda)或谷氨酸的腺苷调节(用FSCV测量)(测量
与iglusnfr)。在第三个目标中,我们将结合多通道FSCV和体内纤维光度法测量值
遗传编码的传感器。我们将在体内检测腺苷,多巴胺和钙的检测
更改神经传递和神经元活性的腺苷神经调节。这
研究很重要,因为它开发了广泛适用于多重神经递质的工具
和神经调节剂的测量,利用FSCV的组合强度和遗传编码
传感器。这也很重要,因为多路复用工具将为临时性提供前所未有的图片
和腺苷神经调节的空间动力学。生物学的影响是了解快速和局部
腺苷神经调节的性质,这对于设计基于腺苷的治疗很重要
帕金森氏症,缺血或脑损伤等疾病可能会受到神经保护性。
多路复用工具可以应用于监视许多其他神经化学相互作用,在大脑切片中或在
体内,将在时间传感器时将神经化学监测的领域推进到一个神经化学的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
B. JILL VENTON其他文献
B. JILL VENTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('B. JILL VENTON', 18)}}的其他基金
Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
- 批准号:
10538604 - 财政年份:2022
- 资助金额:
$ 62.94万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10522260 - 财政年份:2022
- 资助金额:
$ 62.94万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10656510 - 财政年份:2022
- 资助金额:
$ 62.94万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
9889960 - 财政年份:2018
- 资助金额:
$ 62.94万 - 项目类别:
Carbon nanotube fiber and yarn microelectrodes for high temporal resolution measu
用于高时间分辨率测量的碳纳米管纤维和纱线微电极
- 批准号:
8701642 - 财政年份:2014
- 资助金额:
$ 62.94万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8387636 - 财政年份:2012
- 资助金额:
$ 62.94万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8651955 - 财政年份:2012
- 资助金额:
$ 62.94万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8469587 - 财政年份:2012
- 资助金额:
$ 62.94万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8828811 - 财政年份:2012
- 资助金额:
$ 62.94万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
9043204 - 财政年份:2012
- 资助金额:
$ 62.94万 - 项目类别:
相似国自然基金
基于尿酸盐和三磷酸腺苷协同刺激痛风性关节炎发病新机制的动物模型构建和评估
- 批准号:81771774
- 批准年份:2017
- 资助金额:79.0 万元
- 项目类别:面上项目
慢性失眠鼠模型的建立及其神经生物学机制的初步研究
- 批准号:81671316
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:面上项目
基于光遗传学方法建立小鼠焦虑模型的研究
- 批准号:81571352
- 批准年份:2015
- 资助金额:110.0 万元
- 项目类别:面上项目
先天性黑矇症Nmnat1小鼠动物模型的建立及其发病机理与表型逆转干预的研究
- 批准号:31371271
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
腺苷受体在酒精依赖动物模型中对短期突触可塑性的调节作用
- 批准号:81000575
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Purinergic Regulation of Bladder Interstitial Cells of Cajal
Cajal 膀胱间质细胞的嘌呤能调节
- 批准号:
9143745 - 财政年份:2015
- 资助金额:
$ 62.94万 - 项目类别:
Purinergic Regulation of Bladder Interstitial Cells of Cajal
Cajal 膀胱间质细胞的嘌呤能调节
- 批准号:
9331629 - 财政年份:2015
- 资助金额:
$ 62.94万 - 项目类别:
Purinergic Regulation of Bladder Interstitial Cells of Cajal
Cajal 膀胱间质细胞的嘌呤能调节
- 批准号:
9035629 - 财政年份:2015
- 资助金额:
$ 62.94万 - 项目类别:
Purinergic Regulation of Bladder Interstitial Cells of Cajal
Cajal 膀胱间质细胞的嘌呤能调节
- 批准号:
8707443 - 财政年份:2013
- 资助金额:
$ 62.94万 - 项目类别:
Purinergic Regulation of Bladder Interstitial Cells of Cajal
Cajal 膀胱间质细胞的嘌呤能调节
- 批准号:
8580974 - 财政年份:2013
- 资助金额:
$ 62.94万 - 项目类别: