AMD genetics: methods and analysis for progression, prediction, and association

AMD 遗传学:进展、预测和关联的方法和分析

基本信息

  • 批准号:
    8662338
  • 负责人:
  • 金额:
    $ 30.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly population of Western countries. In the past few years, over one dozen AMD risk loci have been identified through genome-wide association studies (GWAS), either by individual studies or through meta-analyses of multiple studies from the National Eye Institute (NEI) supported AMD Gene Consortium. An ongoing exome chip experiment on 38,000 AMD/Control subjects will further expand the list by discovering additional rare variants. However, the analyses and statistical methods are still lagging behind the pace of data generation. Emerging genetic and phenotypic data from our collaborators, the AMD Exome Chip Consortium, and public databases (e.g. the dbGaP) will allow us to test new hypotheses, develop and calibrate statistical methods to facilitate ongoing consortium studies in which we are involved. In particular, we are interested in systematically studying the genetic causes and prediction of AMD progression, identifying disease-susceptibility loci in a cohort of African Americans, and developing association methods for family-based studies with binary traits. To achieve these goals, we propose specific aims as follows: 1) To develop a bivariate survival framework to jointly model AMD progression in both eyes and to perform a genome-wide association study of AMD progression using over 4,000 eligible samples from AREDS (Age-Related Eye Disease Study), AREDS2, and the AMD study conducted at the University of Michigan; 2) To develop and validate rigorous statistical models for prediction of AMD occurrence and progression based on demographic, clinical, and genetic information from the results of Aim 1 and to obtain predictive probabilities accounting for different study designs and the correlation between two eyes; 3) To develop and apply novel methods to identify loci associated with AMD risk in 725 unrelated African Americans, combining signals from both association and admixture mapping; and 4) To develop a statistical method for rare variant association tests of binary traits in families under the framework of generalized linear mixed model using a functional modeling approach and to apply the method to our UCLA- Pittsburgh family-based study of 2,188 samples. Our results will advance our understanding of pathogenesis and prevention of AMD occurrence and its progression. The methods we developed and applied will be available to other study groups and will benefit the analysis of ongoing AMD consortium data. In addition, our methods can be applied to other vision research as well. Unique strengths of our research team include: extensive prior experience in the applied analyses of AMD data sets, outstanding statistical genetics expertise, and clinical consultants with deep insight into the AMD data sets they collected. Successful completion of our Aims, where we will develop and apply state-of-the-art statistical methods, will enrich our understanding of AMD pathogenesis and improve individual risk prediction, and therefore will help enhance clinical practice.
描述(由申请人提供):年龄相关性黄斑变性(AMD)是西方国家老年人口失明的主要原因。在过去的几年中,通过全基因组关联研究 (GWAS),无论是通过单独的研究,还是通过国家眼科研究所 (NEI) 支持的 AMD 基因联盟的多项研究的荟萃分析,已经确定了十多个 AMD 风险位点。一项正在进行的针对 38,000 名 AMD/对照受试者的外显子组芯片实验将通过发现其他罕见变异来进一步扩大列表。然而,分析和统计方法仍然落后于数据产生的步伐。来自我们的合作者、AMD 外显子组芯片联盟和公共数据库(例如 dbGaP)的新出现的遗传和表型数据将使我们能够测试新的假设,开发和校准统计方法,以促进我们参与的正在进行的联盟研究。我们特别感兴趣的是系统地研究 AMD 进展的遗传原因和预测,识别非裔美国人群体中的疾病易感位点,并开发基于家庭的二元性状研究的关联方法。为了实现这些目标,我们提出了如下具体目标:1)开发一个双变量生存框架来联合模拟双眼的 AMD 进展,并使用来自 AREDS(年龄-年龄)的 4,000 多个合格样本进行 AMD 进展的全基因组关联研究。相关眼病研究)、AREDS2 和密歇根大学进行的 AMD 研究; 2) 根据目标 1 结果中的人口统计、临床和遗传信息,开发和验证严格的统计模型,用于预测 AMD 的发生和进展,并获得考虑不同研究设计和两只眼睛之间相关性的预测概率; 3) 开发并应用新方法来识别 725 名无关非裔美国人中与 AMD 风险相关的基因座,结合来自关联和混合图谱的信号; 4) 使用函数建模方法,在广义线性混合模型框架下开发一种用于家庭二元性状罕见变异关联测试的统计方法,并将该方法应用于我们基于加州大学洛杉矶分校-匹兹堡分校的 2,188 个样本的家庭研究。我们的结果将增进我们对 AMD 发生及其进展的发病机制和预防的理解。我们开发和应用的方法将可供其他研究小组使用,并将有利于对正在进行的 AMD 联盟数据的分析。此外,我们的方法也可以应用于其他视觉研究。我们研究团队的独特优势包括:在 AMD 数据集应用分析方面的丰富经验、出色的统计遗传学专业知识以及对他们收集的 AMD 数据集有深入了解的临床顾问。我们将开发和应用最先进的统计方法,成功完成我们的目标,将丰富我们对 AMD 发病机制的理解并改善个体风险预测,因此将有助于加强临床实践。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Chen其他文献

Wei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Chen', 18)}}的其他基金

An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
  • 批准号:
    10564824
  • 财政年份:
    2023
  • 资助金额:
    $ 30.11万
  • 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
  • 批准号:
    10714863
  • 财政年份:
    2023
  • 资助金额:
    $ 30.11万
  • 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10601180
  • 财政年份:
    2022
  • 资助金额:
    $ 30.11万
  • 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10665804
  • 财政年份:
    2022
  • 资助金额:
    $ 30.11万
  • 项目类别:
Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
  • 批准号:
    10525401
  • 财政年份:
    2022
  • 资助金额:
    $ 30.11万
  • 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
  • 批准号:
    10414184
  • 财政年份:
    2022
  • 资助金额:
    $ 30.11万
  • 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
  • 批准号:
    10226322
  • 财政年份:
    2020
  • 资助金额:
    $ 30.11万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10043972
  • 财政年份:
    2020
  • 资助金额:
    $ 30.11万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10268184
  • 财政年份:
    2020
  • 资助金额:
    $ 30.11万
  • 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
  • 批准号:
    10463737
  • 财政年份:
    2020
  • 资助金额:
    $ 30.11万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Uncovering sources of human gene expression variation in a globally diverse cohort
揭示全球多样化群体中人类基因表达变异的来源
  • 批准号:
    10607411
  • 财政年份:
    2023
  • 资助金额:
    $ 30.11万
  • 项目类别:
BridgePRS: bridging the gap in polygenic risk scores between ancestries.
BridgePRS:缩小祖先之间多基因风险评分的差距。
  • 批准号:
    10737057
  • 财政年份:
    2023
  • 资助金额:
    $ 30.11万
  • 项目类别:
Empowering gene discovery and accelerating clinical translation for diverse admixed populations
促进基因发现并加速不同混合人群的临床转化
  • 批准号:
    10584936
  • 财政年份:
    2023
  • 资助金额:
    $ 30.11万
  • 项目类别:
Understanding the Increased Risk of Childhood Acute Lymphoblastic Leukemia in Latinos
了解拉丁裔儿童儿童急性淋巴细胞白血病风险增加
  • 批准号:
    10629825
  • 财政年份:
    2022
  • 资助金额:
    $ 30.11万
  • 项目类别:
Understanding Alzheimer disease heterogeneity in Hispanic populations.
了解西班牙裔人群中阿尔茨海默病的异质性。
  • 批准号:
    10449014
  • 财政年份:
    2022
  • 资助金额:
    $ 30.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了