AMD genetics: methods and analysis for progression, prediction, and association
AMD 遗传学:进展、预测和关联的方法和分析
基本信息
- 批准号:8662338
- 负责人:
- 金额:$ 30.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdmixtureAfrican AmericanAge related macular degenerationBlindnessCase-Control StudiesCaucasiansCaucasoid RaceClinicalCommunitiesComputer softwareCountryDataData AnalysesData SetDatabasesDepositionDevelopmentDiseaseDisease susceptibilityElderlyEnsureEyeEye diseasesFamilyFutureGenerationsGenesGeneticGenetic ResearchGenomeGenomicsGlaucomaGoalsIndividualMapsMeta-AnalysisMethodsMichiganModelingNational Eye InstitutePaperPathogenesisPerformancePhasePhenotypePopulationPredispositionPrevalencePreventionPreventive InterventionProbabilityResearchResearch DesignResearch Project GrantsResourcesRiskSamplingSignal TransductionStatistical MethodsStatistical ModelsSurvival AnalysisTestingTimeUnited States National Institutes of HealthUniversitiesVariantVisionVision researchage relatedbaseclinical practicecohortdatabase of Genotypes and Phenotypesexomeexperiencegenetic epidemiologygenetic variantgenome wide association studyimprovedinsightinterestmarkov modelmultidisciplinarynovelpredictive modelingprogramspublic health relevancerare variantresearch studyresponserisk variantsuccesstooltraituser-friendly
项目摘要
DESCRIPTION (provided by applicant): Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly population of Western countries. In the past few years, over one dozen AMD risk loci have been identified through genome-wide association studies (GWAS), either by individual studies or through meta-analyses of multiple studies from the National Eye Institute (NEI) supported AMD Gene Consortium. An ongoing exome chip experiment on 38,000 AMD/Control subjects will further expand the list by discovering additional rare variants. However, the analyses and statistical methods are still lagging behind the pace of data generation. Emerging genetic and phenotypic data from our collaborators, the AMD Exome Chip Consortium, and public databases (e.g. the dbGaP) will allow us to test new hypotheses, develop and calibrate statistical methods to facilitate ongoing consortium studies in which we are involved. In particular, we are interested in systematically studying the genetic causes and prediction of AMD progression, identifying disease-susceptibility loci in a cohort of African Americans, and developing association methods for family-based studies with binary traits. To achieve these goals, we propose specific aims as follows: 1) To develop a bivariate survival framework to jointly model AMD progression in both eyes and to perform a genome-wide association study of AMD progression using over 4,000 eligible samples from AREDS (Age-Related Eye Disease Study), AREDS2, and the AMD study conducted at the University of Michigan; 2) To develop and validate rigorous statistical models for prediction of AMD occurrence and progression based on demographic, clinical, and genetic information from the results of Aim 1 and to obtain predictive probabilities accounting for different study designs and the correlation between two eyes; 3) To develop and apply novel methods to identify loci associated with AMD risk in 725 unrelated African Americans, combining signals from both association and admixture mapping; and 4) To develop a statistical method for rare variant association tests of binary traits in families under the framework of generalized linear mixed model using a functional modeling approach and to apply the method to our UCLA- Pittsburgh family-based study of 2,188 samples. Our results will advance our understanding of pathogenesis and prevention of AMD occurrence and its progression. The methods we developed and applied will be available to other study groups and will benefit the analysis of ongoing AMD consortium data. In addition, our methods can be applied to other vision research as well. Unique strengths of our research team include: extensive prior experience in the applied analyses of AMD data sets, outstanding statistical genetics expertise, and clinical consultants with deep insight into the AMD data sets they collected. Successful completion of our Aims, where we will develop and apply state-of-the-art statistical methods, will enrich our understanding of AMD pathogenesis and improve individual risk prediction, and therefore will help enhance clinical practice.
描述(由申请人提供):与年龄相关的黄斑变性(AMD)是西方国家老年人口失明的主要原因。在过去的几年中,通过个人研究或通过国家眼睛研究所(NEI)支持AMD基因联盟的多项研究的荟萃分析,通过全基因组关联研究(GWAS)确定了超过十二个AMD风险基因座。在38,000 AMD/控制对象上进行的外显子芯片实验将通过发现其他稀有变体进一步扩大列表。但是,分析和统计方法仍落后于数据生成的速度。来自我们的合作者,AMD Exome CHIP联盟以及公共数据库(例如DBGAP)的新兴遗传和表型数据将使我们能够检验新的假设,开发和校准统计方法,以促进我们参与其中参与其中的正在进行的联盟研究。特别是,我们有兴趣系统地研究AMD进展的遗传原因和预测,在非裔美国人队列中识别疾病敏感性基因座,以及开发具有二进制特征的基于家庭研究的关联方法。为了实现这些目标,我们提出了以下特定目的:1)开发双变量生存框架,以共同对眼睛的AMD进展进行建模,并使用AREDS(年龄相关的眼科研究)的4,000多个合格样本对AMD进展进行全基因组进展研究,AREDS2,AMD研究,以及在密歇根州大学的University of Michigan of Michigan of Michigans of Michigan of Michigans of Michigans; 2)从AIM 1的结果中,基于人口统计,临床和遗传信息来开发和验证严格的统计模型,以预测AMD的发生和进展,并获得有关不同研究设计的预测概率以及两只眼睛之间的相关性; 3)开发和应用新颖的方法来识别725名无关的非裔美国人中与AMD风险相关的基因座,结合了关联和混合映射的信号; 4)使用功能建模方法在广义线性混合模型框架下开发一种稀有变体关联测试的二进制特征测试,并将方法应用于我们的UCLA-匹兹堡家庭基于2,188个样本的研究。我们的结果将提高我们对发病机理和预防AMD发生及其进展的理解。我们开发和应用的方法将用于其他研究组,并将有益于正在进行的AMD联盟数据的分析。此外,我们的方法也可以应用于其他视觉研究。我们的研究团队的独特优势包括:在AMD数据集的应用分析,出色的统计遗传学专业知识和临床顾问的应用分析中,具有丰富的先前经验,并深入了解了他们收集的AMD数据集。成功完成我们的目标,我们将开发和应用最先进的统计方法,将丰富我们对AMD发病机理的理解并改善个人风险预测,因此将有助于增强临床实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
- 批准号:
10564824 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
- 批准号:
10714863 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10601180 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10665804 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
- 批准号:
10525401 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
- 批准号:
10414184 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
- 批准号:
10226322 - 财政年份:2020
- 资助金额:
$ 30.11万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10043972 - 财政年份:2020
- 资助金额:
$ 30.11万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10268184 - 财政年份:2020
- 资助金额:
$ 30.11万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10463737 - 财政年份:2020
- 资助金额:
$ 30.11万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering sources of human gene expression variation in a globally diverse cohort
揭示全球多样化群体中人类基因表达变异的来源
- 批准号:
10607411 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
BridgePRS: bridging the gap in polygenic risk scores between ancestries.
BridgePRS:缩小祖先之间多基因风险评分的差距。
- 批准号:
10737057 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Empowering gene discovery and accelerating clinical translation for diverse admixed populations
促进基因发现并加速不同混合人群的临床转化
- 批准号:
10584936 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Understanding Alzheimer disease heterogeneity in Hispanic populations.
了解西班牙裔人群中阿尔茨海默病的异质性。
- 批准号:
10449014 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
Understanding the Increased Risk of Childhood Acute Lymphoblastic Leukemia in Latinos
了解拉丁裔儿童儿童急性淋巴细胞白血病风险增加
- 批准号:
10629825 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别: