Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
基本信息
- 批准号:10525401
- 负责人:
- 金额:$ 12.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAmino AcidsArteriesAttenuatedBiologicalBlood VesselsCardiovascular systemCell CommunicationCell Culture TechniquesCellsChromatographyChronic Kidney FailureCoculture TechniquesComplexDataDepositionDevelopmentEnd stage renal failureEndothelial CellsEnvironmentFunctional disorderGeneral PopulationHemodialysisHigh PrevalenceHumanImpairmentInorganic Phosphate TransporterKnowledgeLiteratureMediator of activation proteinMetabolicModelingMolecularNitric OxideNitric Oxide PathwayOsteoblastsOsteogenesisParacrine CommunicationParticipantPathogenesisPathologicPathway interactionsPatientsPhenotypeProcessProteomicsRNARenal functionResearch ProposalsRoleSerumSignal PathwaySignal TransductionSmall Interfering RNASmooth Muscle MyocytesStable Isotope LabelingSystemTestingTherapeutic AgentsToxinTranslational ResearchVascular Endothelial CellVascular Smooth MuscleVascular calcificationbasebone healthcalcificationcalcium phosphatecell typedesigneffective therapyhealthy volunteerimprovedin vitro Modelin vivoinnovationinorganic phosphateinsightmineralizationmortalitymultidisciplinarynew therapeutic targetnovelnovel therapeuticsosteogenicparacrinepreventpromotersextooltranslational potentialtranslational scientisttreatment strategyuptake
项目摘要
ABSTRACT
Patients with chronic kidney disease (CKD) have high cardiovascular mortality, and this could be partly due to
the development of vascular calcification, which is characterized by a pathological deposition of calcium and
phosphate in the arterial walls. Vascular calcification is common in patients with CKD due to the accumulation
of uremic toxins and metabolic disturbances such as hyperphosphatemia. Unfortunately, there is no effective
treatment to prevent or slow the progression of vascular calcification. Our overarching aim is to identify new
therapeutic targets to treat vascular calcification by studying the interaction between two major vascular cell
types—endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). In the pathogenesis of vascular
calcification, while osteogenic differentiation of VSMCs is the key process, EC-VSMC interaction also appears
to be important, yet EC-VSMC interaction is not well-studied. To address this knowledge gap, we have
assembled a multidisciplinary team of experts and established an insert co-culture system of primary human
aortic ECs and human aortic VSMCs. Compared to mono-culture, this co-culture system allows us to model
distinct aspects of the multi-cellular environment in vivo. We will test the central hypothesis that uremic serum
from patients with severe CKD alters EC secretome, which in turn induces osteogenic differentiation of VSMCs
and calcification. Studying uremic serum takes into account the complex metabolic alteration in CKD and has
great translational potential. Our two aims are (1) to define the paracrine effects of ECs on phosphate induced
calcification of VSMC culture; (2) to determine the effects of uremic serum via EC-VSMC signaling on
osteogenic differentiation of VSMCs and calcification. In Aim 1, using medium containing high phosphate,
VSMCs will be cultured with or without ECs, or with ECs transfected with small interfering RNA targeting
phosphate transporters to block the intracellular uptake of phosphate. Then, we will elucidate the role of the
nitric oxide pathway in EC-VSMC paracrine signaling and identify novel signaling pathways by examining
cellular secretome using an unbiased approach of SILAC (stable isotope labeling of amino acids in cell
culture)-based quantitative proteomics. In Aim 2, VSMCs will be cultured with or without ECs, and in the
presence of uremic or normal serum. Uremic serum will be obtained from patients with end stage kidney
disease receiving hemodialysis and compared to normal serum from age- and sex-matched healthy
volunteers. Then, we will quantify cellular secretome using SILAC-based proteomics to identify specific
paracrine factors, and fractionate serum using chromatography to isolate the components of uremic serum that
promote calcification. Studying EC-VSMC signaling will help identify new therapies that can attenuate vascular
calcification, making this proposal significant. With the use of human uremic serum, primary human cells in an
insert co-culture system, and SILAC-based proteomics, this project is highly innovative and has great
translational potential.
抽象的
慢性肾脏病 (CKD) 患者心血管死亡率较高,部分原因可能是
血管钙化的发展,其特征是钙和钙的病理性沉积
由于磷酸盐的积累,血管壁钙化在 CKD 患者中很常见。
不幸的是,目前还没有有效的治疗尿毒症毒素和高磷血症等代谢紊乱的方法。
我们的首要目标是寻找新的治疗方法来预防或减缓血管钙化的进展。
通过研究两个主要血管细胞之间的相互作用来治疗血管钙化的治疗目标
血管发病机制中的两种类型——内皮细胞(EC)和血管平滑肌细胞(VSMC)。
钙化过程中,VSMC成骨分化是关键过程,EC-VSMC相互作用也出现
很重要,但 EC-VSMC 相互作用尚未得到充分研究。
组建多学科专家团队,建立原代人类插入共培养体系
主动脉 EC 和人类主动脉 VSMC 与单一培养相比,这种共培养系统使我们能够建模。
我们将测试尿毒症血清的中心假设。
来自严重 CKD 患者的 EC 分泌组发生改变,进而诱导 VSMC 成骨分化
研究尿毒症血清考虑到 CKD 中复杂的代谢变化。
我们的两个目标是(1)确定 EC 对磷酸盐诱导的旁分泌作用。
VSMC培养物的钙化;(2)确定尿毒症血清通过EC-VSMC信号传导对血管平滑肌细胞(VSMC)的影响。
VSMC 的成骨分化和钙化 在目标 1 中,使用含有高磷酸盐的培养基,
VSMC 将在有或没有 EC 的情况下进行培养,或者在 EC 转染有小干扰 RNA 靶向的情况下进行培养
然后,我们将阐明磷酸盐转运蛋白阻断细胞内磷酸盐摄取的作用。
EC-VSMC 旁分泌信号传导中的一氧化氮途径,并通过检查确定新的信号传导途径
使用 SILAC(细胞中氨基酸的稳定同位素标记)的无偏方法进行细胞分泌组分析
在目标 2 中,将在有或没有 EC 的情况下培养 VSMC,并且在
尿毒症或正常血清的存在将从终末期肾病患者获得。
接受血液透析的疾病并与年龄和性别匹配的健康人的正常血清进行比较
然后,我们将使用基于 SILAC 的蛋白质组学来量化细胞分泌组,以识别特定的细胞分泌组。
旁分泌因子,并使用色谱法分离血清以分离尿毒症血清的成分
研究 EC-VSMC 信号传导将有助于确定可减弱血管的新疗法。
钙化,使得这一建议具有重要意义,因为使用了人尿毒症血清,原代人类细胞。
插入共培养系统,以及基于SILAC的蛋白质组学,该项目具有高度的创新性和巨大的应用价值。
翻译潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
- 批准号:
10564824 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
- 批准号:
10714863 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10601180 - 财政年份:2022
- 资助金额:
$ 12.53万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10665804 - 财政年份:2022
- 资助金额:
$ 12.53万 - 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
- 批准号:
10414184 - 财政年份:2022
- 资助金额:
$ 12.53万 - 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
- 批准号:
10226322 - 财政年份:2020
- 资助金额:
$ 12.53万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10043972 - 财政年份:2020
- 资助金额:
$ 12.53万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10268184 - 财政年份:2020
- 资助金额:
$ 12.53万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10463737 - 财政年份:2020
- 资助金额:
$ 12.53万 - 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
- 批准号:
10056062 - 财政年份:2020
- 资助金额:
$ 12.53万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
叶黄素调控脂代谢紊乱所致年龄相关性黄斑病变的血-视网膜屏障损伤机制研究
- 批准号:82373570
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
A bioluminescent-based imaging probe for noninvasive longitudinal monitoring of CoQ10 uptake in vivo
基于生物发光的成像探针,用于体内 CoQ10 摄取的无创纵向监测
- 批准号:
10829717 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别:
Dissecting connections between diet, the microbiome and Alzheimers disease
剖析饮食、微生物组和阿尔茨海默病之间的联系
- 批准号:
10740056 - 财政年份:2023
- 资助金额:
$ 12.53万 - 项目类别: