Uncovering sources of human gene expression variation in a globally diverse cohort
揭示全球多样化群体中人类基因表达变异的来源
基本信息
- 批准号:10607411
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-09-26
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdmixtureAffectAutomobile DrivingAwarenessBinding SitesBiologicalComplexDataData SetDiseaseEquityEthnic OriginEuropeanEuropean ancestryEventEvolutionGene ExpressionGene Expression ProfileGene FrequencyGenealogyGenetic Enhancer ElementGenetic RecombinationGenetic VariationGenetic studyGenomeGenomicsGenotypeGoalsGraphHealthHumanHuman GeneticsHuman GenomeIndividualKnowledgeLengthLinkLinkage DisequilibriumMapsMeasuresMethodsModelingMolecularParticipantPatternPhenotypePhylogenetic AnalysisPopulationPopulation ControlPopulation GeneticsQuantitative Trait LociRNA SplicingResearchResearch DesignResolutionResourcesSamplingSeriesSiteSocietiesSourceStratificationStructureTissuesTreesUnderrepresented PopulationsVariantWorkcausal variantcohortdata structuredifferential expressiondiverse dataepigenomicsgene discoverygene expression variationgenetic varianthealth care disparityhuman RNA sequencingimprovedlymphoblastoid cell linenoveltooltraittranscriptome sequencingvariant of interest
项目摘要
PROJECT SUMMARY
Genetic variation affecting gene expression level and splicing accounts for a large proportion of phenotypic
variation between humans, including health and disease. The variants that underlie these phenotypic changes
are often discovered by associating individuals’ gene expression data with their genotypes. These methods
can be confounded by population structure in the sample, which leads to false positive and negative errors. As
such, samples are often selected from relatively homogenous populations. However, this limits the applicability
of results to populations not included in the study, and limits the resolution at which potentially causal variants
can be identified. Previous work has shown that controlling for population structure locally across the genome
in association studies of diverse samples serves to reduce error. However, these methods assign individuals to
one of a few ancestral populations and do not fully capture the relatedness between included samples.
To extend the results of association studies to diverse cohorts, I will develop a method to control for
local relatedness between samples in association studies. The Ancestral Recombination Graph (ARG) is a
data structure which encodes the genealogical relationships between samples at each locus along the
genome. In Aim 1, I will develop a linear mixed model approach for association mapping that utilizes a
similarity matrix derived from the ARG to control for local relatedness between samples.
One barrier in extending the results of association studies investigating gene expression is that the
majority of data currently available is from individuals of European descent. To address this limitation, I
recently generated gene expression data for a large, globally diverse human sample. In Aim 2, I will use the
method developed in Aim 1 to map expression level- and splicing-associated variation in this sample. I will then
investigate enrichment of epigenomic features near associated variants to determine the functional
mechanisms by which they may be driving transcription differences, and I will intersect my findings with
previously discovered disease associations. Using this globally diverse dataset, I will also explore the diversity
and evolution of human gene expression, elucidating the extent to which patterns of gene expression are
partitioned within versus between populations and the sources of such stratification.
Extending association studies to diverse cohorts requires not only diverse datasets, but also tools that
can appropriately control for patterns of population structure within those datasets; the research proposed here
addresses both goals. This will allow the discovery of associations in previously underrepresented groups and
will also serve to improve confidence in discovering causal variants. Together, this proposed work will
characterize the functional mechanisms linking genetic variation and phenotypic differences in a globally
diverse human cohort.
项目概要
影响基因表达水平和剪接的遗传变异在表型中占很大比例
人类之间的变异,包括健康和疾病的变异。
通常通过将个体的基因表达数据与其基因型相关联来发现。
可能会被样本中的总体结构所混淆,从而导致假阳性和阴性错误。
因此,样本通常是从相对同质的总体中选择的,但这限制了适用性。
结果对未包括在研究中的人群的影响,并限制了潜在因果变异的分辨率
先前的工作表明,可以在整个基因组中局部控制种群结构。
不同样本的关联研究有助于减少误差,然而,这些方法将个体分配给不同的样本。
少数祖先群体之一,并且没有完全捕获所包含样本之间的相关性。
为了将关联研究的结果扩展到不同的群体,我将开发一种方法来控制
关联研究中样本之间的局部相关性。祖先重组图(ARG)是一个。
编码沿线每个基因座的样本之间的遗传关系的数据结构
在目标 1 中,我将开发一种利用线性混合模型进行关联映射的方法。
从 ARG 导出的相似性矩阵用于控制样本之间的局部相关性。
扩展研究基因表达的关联研究结果的一个障碍是
目前可用的大部分数据来自欧洲血统的人。为了解决这一限制,我。
最近为全球多样化的大型人类样本生成了基因表达数据,在目标 2 中,我将使用
然后我将使用目标 1 中开发的方法来绘制该样本中的表达水平和剪接相关变异。
研究相关变体附近表观基因组特征的富集以确定功能
它们可能驱动转录差异的机制,我将把我的发现与
使用这个全球多样化的数据集,我还将探索先前发现的疾病关联。
和人类基因表达的进化,阐明基因表达模式的程度
人口内部和人口之间的划分以及这种分层的来源。
将关联研究扩展到不同的群体不仅需要不同的数据集,还需要能够
可以适当地控制这些数据集中的人口结构模式;
解决这两个目标。这将允许发现以前代表性不足的群体中的关联。
这项拟议的工作还将有助于提高发现因果变异的信心。
描述全球范围内遗传变异和表型差异之间联系的功能机制
多样化的人类群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dylan James Taylor其他文献
Dylan James Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
BridgePRS: bridging the gap in polygenic risk scores between ancestries.
BridgePRS:缩小祖先之间多基因风险评分的差距。
- 批准号:
10737057 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Empowering gene discovery and accelerating clinical translation for diverse admixed populations
促进基因发现并加速不同混合人群的临床转化
- 批准号:
10584936 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Understanding the Increased Risk of Childhood Acute Lymphoblastic Leukemia in Latinos
了解拉丁裔儿童儿童急性淋巴细胞白血病风险增加
- 批准号:
10629825 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Understanding Alzheimer disease heterogeneity in Hispanic populations.
了解西班牙裔人群中阿尔茨海默病的异质性。
- 批准号:
10449014 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Understanding Alzheimer disease heterogeneity in Hispanic populations.
了解西班牙裔人群中阿尔茨海默病的异质性。
- 批准号:
10677624 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别: