Brain Image Analysis Tools for Quantitative Longitudinal Assessment of MS
用于 MS 定量纵向评估的脑图像分析工具
基本信息
- 批准号:8288854
- 负责人:
- 金额:$ 33.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAnatomic ModelsAnatomyAtrophicBiometryBlindnessBrainBrain imagingCentral Nervous System DiseasesClinicalClinical TrialsCommunitiesComputer softwareDataData SetDevelopmentDiagnosisDiffusionDiffusion Magnetic Resonance ImagingDiseaseDisease ProgressionDizzinessEarly DiagnosisEngineeringExplosionFatigueFrequenciesFunctional disorderHumanImageImage AnalysisImpaired cognitionIndividualInflammationLeadLesionLimb structureLocationLongitudinal StudiesMagnetic ResonanceMagnetic Resonance ImagingMeasurementMeasuresMedical ImagingMethodsMonitorMultiple SclerosisMultiple Sclerosis LesionsNeurologistNeurologyNeurosciencesOnset of illnessOutcomePathologyPatientsPerformancePharmacotherapyPhysiciansPhysiologic pulsePopulationResearchResearch PersonnelScanningScientistSensitivity and SpecificitySeriesSimulateSoftware EngineeringSoftware ToolsSource CodeSpecificityStructureSymptomsSystemTechnologyTimeUnited StatesValidationbasebrain tissuebrain volumecerebral atrophydesigndisabilityexperiencegray matterimprovedin vivolongitudinal analysislongitudinal designnervous system disordernovelopen sourcepatient populationpublic health relevancereconstructiontoolwhite matter
项目摘要
DESCRIPTION (provided by applicant): Multiple Sclerosis (MS) is a disease of the central nervous system characterized by inflammation and neuroaxonal degeneration in both grey and white matter structures. MS affects over 2.5 million people worldwide and over 250,000 people in the United States. Those afflicted may experience a wide range of debilitating symptoms including cognitive impairments, partial or complete vision loss, weakness in limbs, dizziness, and fatigue. These symptoms often occur sporadically at the onset of the disease but can worsen over time with respect to both frequency and intensity. In vivo MR acquisitions have shown that whole brain and cortical atrophy, an increased presence of white matter lesions, and a reduction in white matter connectivity occur in MS patients. Quantitative characterization of these brain changes, however, remains a challenge because of the lack of accurate and reliable image analysis tools that effectively model the anatomical changes that occur in MS. To address these issues, we propose to develop, validate, and apply software tools for the longitudinal analysis of MR brain images acquired from MS patients. We will leverage the experience of our research team in whole brain and lesion segmentation, reconstruction of the cerbral cortex, segmentation of white matter tracts, and software engineering to create a suite of tools that will benefit both MS researchers, clinicians, and ultimately the MS patient population. Over the duration of this R01 project, we will accomplish the following specific aims: 1) develop image analysis tools specifically designed for the quantitative longitudinal analysis of brain images with MS; 2) provide tools and data for validating single time point and longitudinal MS image analysis algorithms; 3) apply the developed tools to an ongoing MS longitudinal study that will reveal associations between brain volumes, lesion volume and location, cortical atrophy, and clinical outcomes on both a cross-sectional and longitudinal scale. The proposed tools will fill critical gaps in MS brain image analysis technology by allowing accurate and stable measurements of lesion volume, brain tissue volumes, cortical geometry, and white matter connectivity. This project will significantly impact the neurology, neuroscience, and image analysis communities. The released tools will enable a better understanding of the anatomical changes that occur during the progression of MS, potentially leading to early detection of functionally specific systems of disability. Furthermore, not only will clinical trials for MS drug therapies be greatly facilitated, but the developed tools may also be used to identify subsets of patients suitable for specific drug therapies. The released data and validation tools will also allow for a comparison of existing and newly developed methods, not only in MS patients, but also in healthy populations.
PUBLIC HEALTH RELEVANCE: Multiple Sclerosis is a debilitating neurological disease that affects over 250,000 people in the United States alone. The development of robust and accurate algorithms for quantitatively analyzing brain images in MS patients will lead to a better understanding of the anatomical changes that occur during the progression of MS, and will facilitate clinical trials for MS drug therapies. This will ultimately lead to improved diagnosis and treatment of MS.
描述(由申请人提供):多发性硬化症(MS)是一种中枢神经系统疾病,其特征在于灰质和白质结构中的炎症和神经轴突变性。 多发性硬化症影响着全球超过 250 万人,以及超过 25 万人在美国。 患者可能会出现一系列使人衰弱的症状,包括认知障碍、部分或完全视力丧失、四肢无力、头晕和疲劳。 这些症状通常在疾病发作时偶尔出现,但随着时间的推移,频率和强度都会恶化。 体内 MR 采集显示,多发性硬化症患者出现全脑和皮质萎缩、白质病变增加以及白质连接性减少。 然而,由于缺乏准确可靠的图像分析工具来有效模拟多发性硬化症中发生的解剖变化,对这些大脑变化的定量表征仍然是一个挑战。 为了解决这些问题,我们建议开发、验证和应用软件工具,对从多发性硬化症患者采集的 MR 脑图像进行纵向分析。 我们将利用我们的研究团队在全脑和病变分割、大脑皮层重建、白质束分割和软件工程方面的经验来创建一套工具,使多发性硬化症研究人员、临床医生以及最终的多发性硬化症患者受益患者群体。 在R01项目期间,我们将实现以下具体目标:1)开发专门用于利用MS对大脑图像进行定量纵向分析的图像分析工具; 2)提供用于验证单时间点和纵向MS图像分析算法的工具和数据; 3) 将开发的工具应用于正在进行的 MS 纵向研究,该研究将揭示大脑体积、病变体积和位置、皮质萎缩以及横断面和纵向尺度上的临床结果之间的关联。 所提出的工具将通过精确稳定地测量病变体积、脑组织体积、皮质几何形状和白质连接性来填补 MS 脑图像分析技术的关键空白。 该项目将对神经病学、神经科学和图像分析界产生重大影响。 发布的工具将有助于更好地理解多发性硬化症进展过程中发生的解剖学变化,从而有可能早期发现功能性特定系统的残疾。 此外,不仅将大大促进多发性硬化症药物治疗的临床试验,而且开发的工具还可用于识别适合特定药物治疗的患者亚群。 发布的数据和验证工具还将允许对现有方法和新开发的方法进行比较,不仅适用于多发性硬化症患者,还适用于健康人群。
公共卫生相关性:多发性硬化症是一种使人衰弱的神经系统疾病,仅在美国就有超过 250,000 人受到影响。 开发用于定量分析多发性硬化症患者脑部图像的稳健而准确的算法将有助于更好地了解多发性硬化症进展过程中发生的解剖学变化,并将促进多发性硬化症药物治疗的临床试验。 这最终将改善多发性硬化症的诊断和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dzung L Pham其他文献
Serum NfL and GFAP as biomarkers of progressive neurodegeneration in TBI.
血清 NfL 和 GFAP 作为 TBI 中进行性神经退行性变的生物标志物。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
P. Shahim;Dzung L Pham;Andre J. van der Merwe;Brian Moore;Yi;S. Lippa;K. Kenney;Ramon Diaz;Leighton Chan - 通讯作者:
Leighton Chan
Neuroimaging Findings in US Government Personnel and Their Family Members Involved in Anomalous Health Incidents.
参与异常健康事件的美国政府人员及其家人的神经影像学发现。
- DOI:
10.1001/jama.2024.2424 - 发表时间:
2024-03-18 - 期刊:
- 影响因子:0
- 作者:
Carlo Pierpaoli;A. Nayak;Rakibul Hafiz;M. Irfanoglu;Gang Chen;Paul Taylor;Mark Hallett;Michael Hoa;Dzung L Pham;Yi;Anita D Moses;André J van der Merwe;S. Lippa;Carmen C Brewer;Chris K Zalewski;Cris Zampieri;L. C. Turtzo;P. Shahim;Leighton Chan;Brian Moore;Lauren Stamps;Spencer B Flynn;Julia Fontana;Swathi Tata;Jessica Lo;Mirella A Fern;ez;ez;Annie Lori;Jesse Matsubara;Julie Goldberg;Thuy;Noa Sasson;Justine Lely;Bryan Smith;K. King;Jennifer Chisholm;Julie Christensen;M. T. Magone;Chantal Cousineau;L. French;Simge J. Yonter;Sanaz Attaripour;Chen Lai - 通讯作者:
Chen Lai
A Pilot Study Investigating the Use of serum GFAP to Monitor Changes in Brain White Matter Integrity after Repetitive Head Hits During a Single Collegiate football game.
一项初步研究,调查在单场大学橄榄球比赛中重复头部撞击后使用血清 GFAP 监测脑白质完整性的变化。
- DOI:
10.1089/neu.2023.0307 - 发表时间:
2024-05-16 - 期刊:
- 影响因子:4.2
- 作者:
Jeffrey Bazarian;B. Abar;Kian Merchant;Dzung L Pham;Eric Rozen;Rebekah Mannix;Keisuke Kawata;Yi;Steve J Stephen;Jessica Gill - 通讯作者:
Jessica Gill
Dzung L Pham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dzung L Pham', 18)}}的其他基金
Advanced Image Analysis Tools for Super-Resolved MRI in Small Animals
用于小动物超分辨率 MRI 的高级图像分析工具
- 批准号:
10468946 - 财政年份:2021
- 资助金额:
$ 33.35万 - 项目类别:
Advanced Image Analysis Tools for Super-Resolved MRI in Small Animals
用于小动物超分辨率 MRI 的高级图像分析工具
- 批准号:
10303505 - 财政年份:2021
- 资助金额:
$ 33.35万 - 项目类别:
Brain Image Analysis Tools for Quantitative Longitudinal Assessment of MS
用于 MS 定量纵向评估的脑图像分析工具
- 批准号:
8698472 - 财政年份:2010
- 资助金额:
$ 33.35万 - 项目类别:
Brain Image Analysis Tools for Quantitative Longitudinal Assessment of MS
用于 MS 定量纵向评估的脑图像分析工具
- 批准号:
8501702 - 财政年份:2010
- 资助金额:
$ 33.35万 - 项目类别:
Brain Image Analysis Tools for Quantitative Longitudinal Assessment of MS
用于 MS 定量纵向评估的脑图像分析工具
- 批准号:
8096798 - 财政年份:2010
- 资助金额:
$ 33.35万 - 项目类别:
Brain Image Analysis Tools for Quantitative Longitudinal Assessment of MS
用于 MS 定量纵向评估的脑图像分析工具
- 批准号:
7946018 - 财政年份:2010
- 资助金额:
$ 33.35万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 33.35万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 33.35万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 33.35万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 33.35万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 33.35万 - 项目类别: