Using Multiple Data Sources to Improve Respondent Driven Sampling Estimation
使用多个数据源改进受访者驱动的抽样估计
基本信息
- 批准号:8471552
- 负责人:
- 金额:$ 21.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-15 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AIDS/HIV problemAccountingAddressCenters for Disease Control and Prevention (U.S.)CharacteristicsChinaClinicCommunicable DiseasesCommunitiesDataData AnalysesData CollectionData SourcesDevelopmentEffectivenessEvaluationFemaleGeographyGuidelinesHIVHealthHealth behaviorInfectionInjecting drug userInterviewInvestmentsLaboratoriesLeadMethodologyMethodsModelingParticipantPopulationPopulation GroupPrevalencePreventiveProbabilityProbability SamplesProceduresProcessProductionProtocols documentationProvinceRecruitment ActivityResearchResearch PersonnelRespondentRestRisk BehaviorsRunningSamplingSampling StudiesSchemeSexually Transmitted DiseasesSimulateSocial NetworkStatistical ModelsStructureSurveysTechniquesbasedesigndisorder riskhigh riskimprovedintravenous drug usermen who have sex with menpopulation healthpublic health relevancesexsimulationvirtual
项目摘要
DESCRIPTION (provided by applicant): Using Multiple Data Sources to Improve Respondent Driven Sampling Estimation ABSTRACT: This study addresses efforts to obtain valid estimates of the prevalence of sexually transmitted disease (STD) infection and risky and preventive health behaviors in a hidden population, female sex workers in China. We take advantage of multiple observations schemas to improve the utility of Respondent Driven Sampling (RDS). RDS is an increasingly popular sampling method used to recruit samples of hidden populations with the aim to provide a probability-based inferential structure for representations of populations such as injection drug users, sex workers, men who have sex with men and population groups whose status characteristics are not likely to be revealed by omnibus survey research because they are rare and socially stigmatized and/or illegal. RDS capitalizes on the social network structure of the hidden population to identify and interview participants. Its validity rests on stringent theoretical assumptions about the referral practices of participants to new participants and the structure of the underlying network that are not observed. Despite significant investments by CDC and similar organizations in RDS, we have few empirical evaluations of its effectiveness at keeping its representation promise. Here we propose to improve RDS for representation of female sex workers in China by moving considerations regarding real-world referral processes from the theoretical to the empirical realms. We accomplish this with a combination of analyses of data we have recently collected through two RDS studies and a venue-based sampling approach in Shanghai and Liuzhou (Guangxi Province). We use this overlapping data collection to observe the social network information embedded in the RDS recruitment process and to realistically simulate RDS settings in order to develop improved RDS estimates adaptive to the observed network referral process. We distill guidelines for researchers using RDS methods on needed steps to improve RDS estimation for representation of other hidden populations.
描述(由申请人提供):使用多个数据源改进受访者驱动的抽样估计 摘要:本研究旨在努力获得隐藏人群(女性)中性传播疾病 (STD) 感染患病率以及危险和预防性健康行为的有效估计中国的性工作者。我们利用多种观察模式来提高受访者驱动抽样 (RDS) 的实用性。 RDS 是一种越来越流行的抽样方法,用于招募隐藏人群的样本,旨在为注射吸毒者、性工作者、男男性行为者和具有身份特征的人群等人群的表示提供基于概率的推理结构综合调查研究不太可能揭示它们,因为它们很罕见并且受到社会污名和/或非法。 RDS 利用隐藏人群的社交网络结构来识别和采访参与者。它的有效性依赖于关于参与者向新参与者的推荐实践以及未观察到的底层网络结构的严格理论假设。尽管 CDC 和类似组织对 RDS 进行了大量投资,但我们对其在保持其代表性承诺方面的有效性几乎没有进行实证评估。在这里,我们建议通过将现实世界转介流程的考虑从理论领域转移到实证领域来改善中国女性性工作者代表性的 RDS。我们通过结合最近通过两项 RDS 研究收集的数据以及上海和柳州(广西省)的基于场地的抽样方法来实现这一目标。我们使用这种重叠的数据收集来观察 RDS 招聘过程中嵌入的社交网络信息,并真实地模拟 RDS 设置,以便开发适应观察到的网络推荐过程的改进的 RDS 估计。我们为使用 RDS 方法的研究人员提炼了关于改进 RDS 估计以代表其他隐藏群体所需步骤的指南。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giovanna M Merli其他文献
Giovanna M Merli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giovanna M Merli', 18)}}的其他基金
Using Multiple Data Sources to Improve Respondent Driven Sampling Estimation
使用多个数据源改进受访者驱动的抽样估计
- 批准号:
8258233 - 财政年份:2011
- 资助金额:
$ 21.36万 - 项目类别:
Using Multiple Data Sources to Improve Respondent Driven Sampling Estimation
使用多个数据源改进受访者驱动的抽样估计
- 批准号:
8084696 - 财政年份:2011
- 资助金额:
$ 21.36万 - 项目类别:
Using Multiple Data Sources to Improve Respondent Driven Sampling Estimation
使用多个数据源改进受访者驱动的抽样估计
- 批准号:
8665821 - 财政年份:2011
- 资助金额:
$ 21.36万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
Evaluation of novel tuberculosis LAM assays among people living with HIV and sepsis
HIV 感染者和败血症患者中新型结核病 LAM 检测的评估
- 批准号:
10548256 - 财政年份:2022
- 资助金额:
$ 21.36万 - 项目类别:
Brief Transdiagnostic Treatment for Anxiety Disorders and PTSD in South Africa: A Hybrid-Effectiveness Trial
南非焦虑症和创伤后应激障碍的简短跨诊断治疗:混合有效性试验
- 批准号:
10369118 - 财政年份:2021
- 资助金额:
$ 21.36万 - 项目类别:
Understanding the Role of Neighborhoods on Urban Youth's Substance Use and Mental Health: A Community-Based Substance Abuse Prevention Project
了解社区对城市青年药物滥用和心理健康的作用:基于社区的药物滥用预防项目
- 批准号:
10675818 - 财政年份:2021
- 资助金额:
$ 21.36万 - 项目类别: