Research Project 2
研究项目2
基本信息
- 批准号:10403256
- 负责人:
- 金额:$ 41.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAddressAffectAnimalsArchitectureBiocompatible MaterialsBiologyBiophysicsBioreactorsCellsCenter for Translational Science ActivitiesChIP-seqChromatinChromatin StructureClinicalCollaborationsCoupledCuesCustomDiseaseDisease ProgressionEnvironmentEpigenetic ProcessExposure toExtracellular MatrixGene ExpressionGene Expression ProfileGene OrderGenesGenetic TranscriptionGenomeGenomicsGoalsHistone AcetylationHistone Deacetylase InhibitorHistonesHumanHydrogelsImageIn VitroKnowledgeMechanicsModificationMolecularMusculoskeletalNanoscopyNanostructuresNuclearOnset of illnessOperative Surgical ProceduresPathologyPharmaceutical PreparationsPhenotypePhysical condensationPhysical environmentPhysical therapyPhysiologicalPlayProteinsProtocols documentationRNARecoveryResearchResearch Project GrantsRoleSeveritiesSiteSystemTechniquesTechnologyTendinopathyTendon InjuriesTendon structureTestingTherapeuticTherapeutic InterventionTherapeutic UsesTimeTissue EngineeringTissuesWorkachilles tendoncell behaviorcostdifferential expressionepigenetic drugepigenomeepigenomic profilinggenome-widegenome-wide analysisgenomic locushistone methylationhistone modificationimaging modalityimprovedinhibitorinnovationjoint loadingmechanical loadmechanical signalnanofibernanoscalenovelosteogenicrepairedrestorationsingle cell analysissoft tissuespatiotemporalsuperresolution imagingtissue degenerationtissue repairtranscriptome sequencingtreatment strategyultra high resolution
项目摘要
PROJECT SUMMARY
Achilles tendinopathy is a very prevalent and costly clinical problem. However, current surgical and drug
strategies for tendon repair are limited, and non-surgical strategies to treat disease focus on stimulating tendon
repair through physical therapy. Thus, there is an unmet clinical need to improve treatment strategies for tendon
injuries. Tendon degeneration alters the chemo-physical environment and changes biophysical inputs to resident
cells (called tenocytes). Both normal and aberrant phenotypes in tendon cells are defined by the dynamic spatio-
temporal organization of their genome, and so it will be important to understand how 3D genome architecture in
tendon cells changes with Achilles tendinopathy and how chemo-mechanical cues regulate transcriptional and
chromatin profiles in degenerative cells to develop better therapeutic strategies for tendinopathies. Furthermore,
the epigenetic mechanisms responsible for the tendon phenotype change in degenerative environments are
underexplored. Epigenetic drugs are available and have been used for therapeutic purposes and likely also
constitute a promising avenue for treatment of tendinopathies through manipulation of the epigenetic landscape
and 3D chromatin architecture of tendon cells to lock in proper cell phenotype. To address these open questions,
the overall goal of Research Project is to test our hypotheses that Achilles tendinopathy alters epigenetic
landscape, 3D chromatin architecture, and transcriptional signatures in tenocytes impacting their phenotype, and
that these alterations can be manipulated and restored via the combination of biophysical cues and epigenetic
modifiers. The proposed work is significant as it will generate new knowledge about how changes in mechanical
loading and mechano-signaling across the spectrum of disease impacts genome organization and tendon cell
phenotype, and how these changes define disease progression and therapeutic interventions. Our Aims are:
Aim 1: Determine how Achilles tendinopathy alters the nanoscale chromatin organization and accessibility
landscape of tenocytes, impacting their phenotype. Aim 2: Identify whether biophysical cues and epigenetic
modifiers restore ‘healthy’ tenocyte genome organization in ‘degenerative’ tenocytes to improve therapeutic
strategies. The proposed research is innovative as we will use cutting-edge genome wide and single cell
analyses to study, for the first time, how Achilles tendinopathy regulates nanoscale chromatin states and
transcriptional activity, using single-cell based imaging and sequencing technologies. These studies will identify
novel epigenetic mechanisms of Achilles tendon pathology and disease onset, new mechanical loading
paradigms, and small epigenome-modifying molecules, providing critical and novel information to support new
mechano-epigenetic strategies to improve the efficacy of targeted physical therapy protocols.
项目摘要
跟腱病是一个非常普遍且昂贵的临床问题。但是,目前的手术和药物
肌腱修复的策略受到限制,非手术策略治疗疾病专注于刺激肌腱
通过物理疗法修复。那是没有满足的临床需要改善肌腱的治疗策略
受伤。肌腱发育改变了化学物理环境,并向居民改变生物物理输入
细胞(称为Tenocyttes)。肌腱细胞中正常和异常表型均由动态空间定义
其基因组的临时组织,因此了解3D基因组体系结构如何
肌腱细胞随跟腱疾病而变化,化学机械提示如何调节转录和
退化细胞中的次数谱,以开发出更好的肌腱病治疗策略。此外,
负责退化环境中肌腱表型变化的表观遗传机制是
尚未得到充实的。可以使用表观遗传药物,并且已用于治疗目的,也可能
构成通过操纵表观遗传景观来治疗肌腱病的承诺大道
肌腱细胞的3D染色质结构锁定在适当的细胞表型中。要解决这些开放问题,
研究项目的总体目标是检验我们的假设,即跟腱病改变表观遗传学
景观,3D染色质体系结构和带有影响其表型的内科细胞的转录特征,
可以通过生物物理提示和表观遗传学的组合来操纵和恢复这些改变
修饰符。提出的工作很重要,因为它将为机械变化产生新的知识
疾病范围内的负载和机械信号影响基因组组织和肌腱细胞
表型以及这些变化如何定义疾病的进展和治疗性干预措施。我们的目标是:
AIM 1:确定跟腱病如何改变纳米级染色质组织和可及性
弯曲细胞的景观,影响其表型。目标2:确定生物物理提示和表观遗传学是否
修饰符恢复“退化”纳科细胞中的“健康” Tenocyte基因组组织,以改善治疗
策略。拟议的研究具有创新性,因为我们将使用尖端的基因组宽和单细胞
分析首次研究跟腱疾病如何调节纳米级染色质状态和
转录活性,使用基于单细胞的成像和测序技术。这些研究将确定
阿喀琉斯肌腱病理学和疾病发作的新型表观遗传机制,新的机械负荷
范式和小表观基因组修改分子,提供关键和新颖的信息以支持新的信息
提高靶向物理治疗方案效率的机械景观策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Su Chin Heo其他文献
Su Chin Heo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Su Chin Heo', 18)}}的其他基金
Preserving chromatin nano-structure to enhance chondrocyte therapeutic potential for cartilage repair
保留染色质纳米结构以增强软骨细胞修复软骨的治疗潜力
- 批准号:
10706966 - 财政年份:2022
- 资助金额:
$ 41.66万 - 项目类别:
Preserving chromatin nano-structure to enhance chondrocyte therapeutic potential for cartilage repair
保留染色质纳米结构以增强软骨细胞修复软骨的治疗潜力
- 批准号:
10365877 - 财政年份:2022
- 资助金额:
$ 41.66万 - 项目类别:
Biophysical regulation of genome architecture in meniscus cells
半月板细胞基因组结构的生物物理调控
- 批准号:
10159078 - 财政年份:2020
- 资助金额:
$ 41.66万 - 项目类别:
Biomimetic Matrix-Based Multiphasic System for Rotator Cuff Repair
用于肩袖修复的仿生基质多相系统
- 批准号:
10223193 - 财政年份:2020
- 资助金额:
$ 41.66万 - 项目类别:
Biomimetic Matrix-Based Multiphasic System for Rotator Cuff Repair
用于肩袖修复的仿生基质多相系统
- 批准号:
10039972 - 财政年份:2020
- 资助金额:
$ 41.66万 - 项目类别:
Biophysical regulation of genome architecture in meniscus cells
半月板细胞基因组结构的生物物理调控
- 批准号:
10604303 - 财政年份:2020
- 资助金额:
$ 41.66万 - 项目类别:
Biophysical regulation of genome architecture in meniscus cells
半月板细胞基因组结构的生物物理调控
- 批准号:
10396050 - 财政年份:2020
- 资助金额:
$ 41.66万 - 项目类别:
相似国自然基金
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:82260745
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:32100438
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional Landscape of Glycosylation in Skin Cancer
皮肤癌中糖基化的功能景观
- 批准号:
10581094 - 财政年份:2023
- 资助金额:
$ 41.66万 - 项目类别:
Characterization of Epstein-Barr Virus Subversion of the Host SMC5/6 Restriction Pathway
Epstein-Barr 病毒颠覆宿主 SMC5/6 限制途径的特征
- 批准号:
10679118 - 财政年份:2023
- 资助金额:
$ 41.66万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 41.66万 - 项目类别:
Predicting 3D physical gene-enhancer interactions through integration of GTEx and 4DN data
通过整合 GTEx 和 4DN 数据预测 3D 物理基因增强子相互作用
- 批准号:
10776871 - 财政年份:2023
- 资助金额:
$ 41.66万 - 项目类别: