Preserving chromatin nano-structure to enhance chondrocyte therapeutic potential for cartilage repair
保留染色质纳米结构以增强软骨细胞修复软骨的治疗潜力
基本信息
- 批准号:10706966
- 负责人:
- 金额:$ 41.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAmino AcidsAnimal ModelArchitectureBiochemicalBiocompatible MaterialsBiological AssayBiologyBiophysicsCartilageCartilage injuryCell Differentiation processCell TherapyCellsChemicalsChondrocytesChromatinClinicalCuesDataDefectDiseaseEpigenetic ProcessExhibitsFluorescent in Situ HybridizationFutureGene ExpressionGene Expression ProfileGenesGenetic TranscriptionGenomeGoalsHeterogeneityHistologicHistone Deacetylase InhibitorHumanHydrogelsHypoxiaImageImplantIn VitroKnowledgeLabelMachine LearningMeasuresMechanicsMesenchymal Stem CellsMetabolicMissionModelingModificationMusculoskeletalNanostructuresNatural regenerationOutcomeOutputPhenotypePopulationProductionPropertyProteinsProxyPublic HealthRNAResearchResearch PersonnelSiteTechnologyTestingTherapeuticTissue EngineeringTissuesTransforming Growth Factor betaTranslationsTreatment EfficacyUnited States National Institutes of HealthWorkarticular cartilagecartilage repairclinical applicationclinical practicedesigndifferential expressiongenome-widegenomic locusimprovedin vivo evaluationinduced pluripotent stem cellinhibitorinnovationjoint destructionmachine learning modelnanonanoscalenovelpreservationpreventrepairedsingle moleculesingle-cell RNA sequencingstemsuperresolution imagingsuperresolution microscopytissue regenerationtranscriptomeultra high resolution
项目摘要
Summary
There is a gap in the knowledge about how chondrocytes lose their phenotype and matrix production
capacity during in vitro expansion. This gap in knowledge stems from the paucity of studies that directly
interrogate chondrocyte genome architecture and transcriptional profiles in single cells to capture the inherent
heterogeneity of cell differentiation. To fill this unmet gap, we will use state-of-the-art super-resolution imaging,
single cell RNA Sequencing (RNA-Seq), high-throughput RNA-FISH (MERFISH) and metabolic labeling
(FUNCAT) technologies to relate, on a cell-by-cell level, the chromatin nano-structure, transcriptional output,
epigenetic modifications and matrix production capacity of single chondrocytes expanded in culture under
different epigenetic and chemo-physical cues. We will further develop machine learning models to predict
chondrocyte phenotype using super-resolution images of chondrocyte chromatin nano-structure. Our central
hypothesis is that there are distinct chromatin nano-structural arrangements and transcriptional signatures
associated with chondrocytes that have high matrix production capacity, and that chromatin nano-structure can
be manipulated in a predictive manner via the combination of epigenetic and chemo-physical cues to improve
chondrocyte therapeutic potential. The basis for this hypothesis is our preliminary super-resolution data of
chromatin nano-structure in in vitro expanded chondrocytes and mesenchymal stem cells grown on substrates
of varying stiffness and subjected to various chemical cues. The proposed work is significant as it will generate
new knowledge about how chromatin nano-structure and epigenetic landscape regulates matrix production
capacity of chondrocytes and how this capacity can be enhanced through manipulation of chromatin and
epigenetic states. Our Aims are:
matrix
whether chromatin nano-structure and transcription are predictive of chondrocyte
production capacity
Aim 1: Determine
Aim 2: Determine how chemo-physical and epigenetic cues impact transitions in chromatin nano-
structure and matrix production in chondrocytes
Aim 3: Determine whether predicted cues improve chondrocyte therapeutic efficacy
In summary, we expect to contribute to the identification of new in vitro expansion conditions that maintain
naïve chondrocyte phenotype and enhance their therapeutic potential. The proposed research is innovative as
it represents a drastic departure from the status quo by applying multi-faceted, single-cell based imaging and
sequencing technologies to determine the relationship between chondrocyte chromatin and epigenetic state,
transcriptional activities, and matrix production. If successful, this work may change clinical practice by providing
improved cell populations for cartilage repair.
概括
关于软骨细胞如何失去其表型和基质产生的知识存在差距
这种知识差距源于直接研究的缺乏。
研究单细胞中的软骨细胞基因组结构和转录谱,以捕获固有的
为了填补这一未满足的空白,我们将使用最先进的超分辨率成像,
单细胞 RNA 测序 (RNA-Seq)、高通量 RNA-FISH (MERFISH) 和代谢标记
(FUNCAT) 技术在逐个细胞水平上关联染色质纳米结构、转录输出、
单个软骨细胞的表观遗传修饰和基质生产能力在培养物中扩增
我们将进一步开发机器学习模型来预测。
使用软骨细胞染色质纳米结构的超分辨率图像来确定软骨细胞表型。
假设存在独特的染色质纳米结构排列和转录特征
与具有高基质生产能力的软骨细胞相关,并且染色质纳米结构可以
通过表观遗传和化学物理线索的结合以预测方式进行操纵,以改善
该假设的基础是我们的初步超分辨率数据。
染色质纳米结构体外扩增的软骨细胞和基质上生长的间充质干细胞
具有不同的刚度并受到各种化学因素的影响,拟议的工作意义重大,因为它将产生。
关于染色质纳米结构和表观遗传景观如何调节基质产生的新知识
软骨细胞的能力以及如何通过操纵染色质和增强这种能力
我们的目标是:
矩阵
染色质纳米结构和转录是否可以预测软骨细胞
生产能力
目标 1:确定
目标 2:确定化学物理和表观遗传线索如何影响染色质纳米粒子的转变
软骨细胞的结构和基质产生
目标 3:确定预测的线索是否可以提高软骨细胞的治疗效果
总之,我们希望有助于确定新的体外扩增条件,以维持
幼稚软骨细胞表型并增强其治疗潜力。拟议的研究具有创新性。
它通过应用多方面的、基于单细胞的成像和
测序技术确定软骨细胞染色质和表观遗传状态之间的关系,
如果成功,这项工作可能会通过提供改变临床实践。
改善软骨修复的细胞群。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Su Chin Heo其他文献
Su Chin Heo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Su Chin Heo', 18)}}的其他基金
Preserving chromatin nano-structure to enhance chondrocyte therapeutic potential for cartilage repair
保留染色质纳米结构以增强软骨细胞修复软骨的治疗潜力
- 批准号:
10365877 - 财政年份:2022
- 资助金额:
$ 41.66万 - 项目类别:
Biophysical regulation of genome architecture in meniscus cells
半月板细胞基因组结构的生物物理调控
- 批准号:
10159078 - 财政年份:2020
- 资助金额:
$ 41.66万 - 项目类别:
Biomimetic Matrix-Based Multiphasic System for Rotator Cuff Repair
用于肩袖修复的仿生基质多相系统
- 批准号:
10223193 - 财政年份:2020
- 资助金额:
$ 41.66万 - 项目类别:
Biomimetic Matrix-Based Multiphasic System for Rotator Cuff Repair
用于肩袖修复的仿生基质多相系统
- 批准号:
10039972 - 财政年份:2020
- 资助金额:
$ 41.66万 - 项目类别:
Biophysical regulation of genome architecture in meniscus cells
半月板细胞基因组结构的生物物理调控
- 批准号:
10604303 - 财政年份:2020
- 资助金额:
$ 41.66万 - 项目类别:
Biophysical regulation of genome architecture in meniscus cells
半月板细胞基因组结构的生物物理调控
- 批准号:
10396050 - 财政年份:2020
- 资助金额:
$ 41.66万 - 项目类别:
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 41.66万 - 项目类别:
Citrulline-urea cycle in KSHV cellular transformation
KSHV 细胞转化中的瓜氨酸-尿素循环
- 批准号:
10634838 - 财政年份:2023
- 资助金额:
$ 41.66万 - 项目类别:
Preserving chromatin nano-structure to enhance chondrocyte therapeutic potential for cartilage repair
保留染色质纳米结构以增强软骨细胞修复软骨的治疗潜力
- 批准号:
10365877 - 财政年份:2022
- 资助金额:
$ 41.66万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10683796 - 财政年份:2022
- 资助金额:
$ 41.66万 - 项目类别: