CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
基本信息
- 批准号:8507287
- 负责人:
- 金额:$ 24.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interacting with the physical environment and manipulating objects is an essential part of daily life. This
ability is lost in upper-limb amputees as well as patients with spinal cord injury, stroke, ALS and other
movement disorders. These people know what they want to do as well as how they would do it if their arms
were functional. If such knowledge is decoded and sent to a prosthetic arm (or to the patient's own arm fitted
with functional electric stimulators) the lost motor function could be restored. The decoding is unlikely to be
perfect however the brain can adapt to an imperfect decoder using real-time feedback. Several groups
including ours have recently demonstrated that at least in principle this can be achieved. However, as is
often the case in science, the initial work has been done in idealized conditions and its applicability to
real-world usage scenarios remains an open question. The goal of this project is to bring movement control
brain-machine interfaces (BMIs) closer to helping the people who need them, and at the same time exploit
the rich datasets we collect in order to advance our understanding of sensorimotor control and learning. This
will be accomplished by creating hybrid BMIs which exploit information from multiple sources, combined with
modern algorithms from machine learning and automatic control.
RELEVANCE (See instructions):
Being able to interact with the physical environment and manipulate objects is an essential part of daily life.
Brain-machine interfaces are one way to restore this ability to patients who have lost it. The proposed
project will bring brain-machine interfaces closer to helping patients in real-worid object manipulation tasks.
与物理环境互动和操纵物体是日常生活的重要组成部分。这
能力在上limb amputees以及脊髓损伤,中风,ALS和其他患者中丧失
运动障碍。这些人知道他们想做什么以及如果他们的手臂会如何做
功能性。如果将这些知识解码并发送到假肢(或安装患者的手臂
使用功能性刺激器)可以恢复运动功能。解码不太可能是
完美的大脑可以使用实时反馈适应不完善的解码器。几个小组
包括我们的包括我们最近表明,至少在原则上可以实现这一目标。但是,按原样
通常在科学的情况下,最初的工作是在理想化的条件下进行的
现实世界的用法方案仍然是一个悬而未决的问题。该项目的目的是带来运动控制
脑机界面(BMI)更接近帮助需要它们的人,同时利用
我们收集的丰富数据集是为了促进我们对感觉运动控制和学习的理解。这
将通过创建混合BMI来实现,从而利用多个来源的信息,并结合使用
机器学习和自动控制的现代算法。
相关性(请参阅说明):
能够与物理环境和操纵物体互动是日常生活的重要组成部分。
脑机界面是恢复失去患者能力的一种方法。提议
项目将使脑机界面更接近帮助患者进行现实的对象操纵任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Emanuel Todorov的其他基金
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:80893108089310
- 财政年份:2010
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
Using a humanoid robot to understand and repair sensorimotor control
使用人形机器人理解和修复感觉运动控制
- 批准号:77945267794526
- 财政年份:2010
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:80557458055745
- 财政年份:2010
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:82881488288148
- 财政年份:2010
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
- 批准号:75124857512485
- 财政年份:2008
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:80634688063468
- 财政年份:2008
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:74667187466718
- 财政年份:2008
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:77956687795668
- 财政年份:2008
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
- 批准号:76249567624956
- 财政年份:2008
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:79018797901879
- 财政年份:2008
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
An automatically-adjusting prosthetic socket for people with transtibial amputation
适用于小腿截肢患者的自动调节假肢接受腔
- 批准号:1036410810364108
- 财政年份:2022
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
An automatically-adjusting prosthetic socket for people with transtibial amputation
适用于小腿截肢患者的自动调节假肢接受腔
- 批准号:1066378910663789
- 财政年份:2022
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
- 批准号:1057017010570170
- 财政年份:2022
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
Supplement: Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
补充:动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
- 批准号:1078533610785336
- 财政年份:2022
- 资助金额:$ 24.04万$ 24.04万
- 项目类别:
RR&D Research Career Scientist Application
RR
- 批准号:1053680010536800
- 财政年份:2022
- 资助金额:$ 24.04万$ 24.04万
- 项目类别: