Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
基本信息
- 批准号:10570170
- 负责人:
- 金额:$ 4.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdoptionAgreementAlgorithmsAmericanAmputationAmputeesAreaArtificial LegBack PainBehaviorBenchmarkingBiologicalCertificationCharacteristicsCommunicationCommunitiesComputer SystemsComputer softwareData SetDevelopmentDevice SafetyDevice or Instrument DevelopmentDevicesDimensionsEnsureEnvironmentEquipmentExhibitsFailureFeedbackForce of GravityFormulationGaitGoalsHigh Performance ComputingHip region structureHumanIndividualInfrastructureInfusion PumpsJointsKneeLegLinkLiteratureLower ExtremityMathematical Model SimulationMathematicsMeasuresMechanicsMedical DeviceMedical Device SafetyMedical centerMentorshipMethodsMichiganMissionModelingMotionMovementMuscleNational Institute of Biomedical Imaging and BioengineeringNational Institute of Child Health and Human DevelopmentOutcomePacemakersPerformancePhasePhysicsProceduresProcessProductionProgram DevelopmentProsthesisPublic HealthQuality of lifeResearchResidual stateRiskRoboticsSafetySideSourceSpecific qualifier valueSystemTechniquesTestingThigh structureTorqueTrainingUniversitiesValidationWalkingWorkankle prosthesiscareerclinical applicationcluster computingcomputing resourcesdesignfallshuman subjectimprovedinsightkinematicsmeetingsnovelpatient mobilitypowered prosthesisprogramsprosthesis wearerrehabilitation researchsimulationsoundtechnology developmenttime intervaltool
项目摘要
ABSTRACT
Sit-stand transitions, the motions executed by individuals to stand up or sit down, are an important determinant
of overall mobility and a common source of falls. Unilateral amputees using standard passive prostheses are
further challenged by sit-stand transitions due to muscle and joint asymmetries they exhibit between the sound
and amputated sides, often resulting in debilitating back pain. Powered knee-ankle prostheses can produce
enough torque to assist meaningfully during sit-stand transitions and can meet design criteria such as
producing smooth motion on the amputated side that matches the sound side. Controllers for these prostheses
can be designed to allow user-driven control of the leg. However, the production of high torques not directly
commanded by the user comes with increased risks. This is of particular concern because these legs must be
adopted outside of controlled lab environments. Thus, any powered prosthesis must demonstrably meet design
and safety criteria. While safety-critical medical devices, such as pacemakers, are subjected to extensive
testing and validation procedures, there is no agreed-upon standard in the powered prosthetics field for how to
define and measure safety. Prior work on sit-stand controllers has focused only on measuring a limited number
of outcomes with respect to one design criterion on a small number of subjects, providing no guarantees about
safety. The set of techniques known as formal verification provides powerful tools to reason about the behavior
of systems that are composed of interacting mechanical, software, and biological modules. Given a model of a
system, formal verification allows us to probe the system’s behavior over an infinite range of possibilities that
cannot be replicated in the lab during a typical testing session. These methods can then guide real-world
testing, and alert system designers to problematic regions of execution. In this project, I propose to apply
formal verification techniques to design a volitional controller for sit-stand transitions with provable safety
guarantees, using physics-based models and novel mathematical formulations of safety.
The University of Michigan Robotics Institute is one of the top institutes of its kind in the US and provides an
ideal environment and infrastructure for the successful completion of this research. The Robotics Institute gait
lab has all of the necessary equipment needed for powered prosthesis research, including two state-of-the-art
prosthetic legs, and access to advanced computational resources such as the Great Lakes high performance
computing cluster. Drs. Gregg and Ozay have proven expertise relevant to the aims of this project, and will
provide mentorship that will guide my research, my training, and the attainment of my career goals.
抽象的
坐站转换,即个人站起来或坐下的动作,是一个重要的决定因素
整体活动能力下降和使用标准被动假肢的单侧截肢者跌倒的常见原因。
由于声音之间表现出的肌肉和关节不对称,坐站转换进一步受到挑战
和截肢,通常会导致使人衰弱的背痛。
足够的扭矩可以在坐站转换过程中提供有意义的帮助,并且可以满足设计标准,例如
在截肢侧产生与这些假肢的健全侧相匹配的平滑运动。
可以设计成允许用户驱动控制腿,但是不能直接产生高扭矩。
由用户指挥会带来更大的风险,这是特别值得关注的,因为这些腿必须受到限制。
因此,任何动力假肢都必须明显符合设计要求。
而起搏器等安全关键型医疗设备则受到广泛的监管。
测试和验证程序,在动力假肢领域没有商定的标准来说明如何
定义和测量安全性 先前有关坐站控制器的工作仅侧重于测量有限的数量。
针对少数受试者的一项设计标准的结果,不提供任何保证
安全性 称为形式验证的一组技术提供了强大的工具来推理行为。
由相互作用的机械、软件和生物模块组成的系统。
对于系统,形式化验证使我们能够在无限的可能性范围内探索系统的行为
在典型的测试过程中无法在实验室中复制这些方法,然后可以指导现实世界。
测试区域,并提醒系统设计者注意执行问题。在这个项目中,我建议应用。
形式化验证技术,设计用于坐站转换的意志控制器,并具有可证明的安全性
使用基于物理的模型和新颖的安全数学公式来保证。
密歇根大学机器人研究所是美国同类顶尖研究所之一,提供
机器人研究所步态研究的成功完成的理想环境和基础设施。
实验室拥有动力假肢研究所需的所有必要设备,包括两台最先进的设备
假肢,并获得先进的计算资源,例如五大湖高性能
Gregg 和 Ozay 博士拥有与该项目目标相关的专业知识,并将
提供指导,指导我的研究、培训和实现我的职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daphna Raquel Raz其他文献
Daphna Raquel Raz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daphna Raquel Raz', 18)}}的其他基金
Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
- 批准号:
10388466 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Supplement: Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
补充:动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
- 批准号:
10785336 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 4.16万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
- 批准号:
10681998 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别:
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
10644112 - 财政年份:2023
- 资助金额:
$ 4.16万 - 项目类别: