CRCNS: PKMzeta-Dependent Protein Synthesis Maintains Synaptic Plasticity

CRCNS:PKMzeta 依赖性蛋白质合成维持突触可塑性

基本信息

项目摘要

DESCRIPTION (provided by applicant): We all have memories that date back to our youth; we remember the house we lived in at age 4; we remember a favorite schoolteacher. The mechanism for storing these memories is believed to be the long-term plasticity of synaptic connections within specific neuronal circuits. However, this putative cellular basis of memory relies on proteins that typically have lifetimes far shorter than the memory. Here exactly lies a fundamental problem of long-term memory and synaptic plasticity: How can memories be stored for a human lifetime on the basis of proteins that are continuously degrading? Recently, it was shown that the brain-specific PKC isoform, protein kinase M??(PKM?), plays a unique role in maintaining both late long-term potentiation (L-LTP) of synapses and long-term memory. This crucial observation, however, does not explain how PKM??can overcome the natural degrading effect of protein turnover and diffusion. The central hypothesis of this proposal is that PKM??, through its control of its own synthesis, can form a bi-stable system, which can account for the maintenance of synapse specific long-term plasticity and memory. Here we propose to mathematically formulate this hypothesis within a biophysical model, and to analyze this model so as to propose testable experimental predictions. We then will directly test these predictions on PKM?-mediated persistent synaptic potentiation, using novel techniques tailored for testing the theory. Intellectual Merit: The finding that PKM??is both necessary and sufficient for the maintenance of synaptic plasticity and long-term memory has fundamentally changed the field of learning and memory, but much needs to be learned about the mechanisms that can actually accomplish the persistence of long-term plasticity and memory. This proposal addresses these questions using a combined theoretical and experimental approach. Such a theory in which bi-stability depends on regulation of translation is novel not only for neuroscience but also for biology in general. Our collaboration is uniquely qualified to carry out the proposed work because the Shouval lab has ample experience in modeling synaptic plasticity in collaboration with experimental groups, and the Sacktor lab has pioneered the science of PKM??and has ample experience with the proposed techniques. The experimental techniques include two new methodologies necessary for testing the predictions. First, we propose to test the model's predictions on protein translation in L-LTP, not by general protein synthesis inhibitors that may have issues of toxicity and indirect effects, but by use of antisense oligodeoxynucleotides directed to the translation start site of PKM??mRNA to specifically block PKM??synthesis in induction and maintenance. Second, because PKM?-mediated potentiation is both highly stable and yet rapidly reversible, we will use a fast-flow hippocampal slice chamber optimized for the study of the maintenance of L-LTP to test key predictions of the model. The proposed stochastic simulations of translation-dependent bi-stability are also novel in computational biology. Broader Impact: As the first demonstrated molecular mechanism of experience-dependent, long-term information storage in the brain, PKM??has significant clinical implications, and within the last year has been shown to contribute to in the biology of a variety of neurological and psychiatric diseases, including post-traumatic stress disorder, central neuropathic pain, and drug abuse. In order to assist the rapidly growing interest in PKM??in many labs, we will make our model accessible to the larger community, allowing for other scientists to test, modify, and incorporate their findings into the model, thus accelerating the pace of scientific discovery. Because an important goal for NSF is to integrate research and education, we will train a diverse pool of students. Our labs already train undergraduates, the Shouval lab takes undergraduates each summer through an REU program (PI S. Cox, Rice), and a UT system grant (PI H. Shouval), and local undergraduates throughout the year, and the Sacktor lab has had a long history of mentoring local disadvantaged high school students (e.g., through the Intel program). Both labs are dedicated to public outreach; for example, an article on PKM??and memory was on the front page of The New York Times. We are eager to extend this type of outreach to the domain of the interaction between theory and experiment in biological sciences.
描述(由申请人提供):我们都有可以追溯到年轻时的记忆;我们记得我们四岁时住过的房子;我们记得一位最喜欢的老师。存储这些记忆的机制被认为是特定神经元回路内突触连接的长期可塑性。然而,这种假定的记忆细胞基础依赖于通常寿命比记忆短得多的蛋白质。这正是长期记忆和突触可塑性的一个基本问题:如何在不断降解的蛋白质的基础上存储人类一生的记忆?最近,研究表明,大脑特异性 PKC 亚型蛋白激酶 M??(PKM?) 在维持突触晚期长期增强 (L-LTP) 和长期记忆方面发挥着独特的作用。然而,这一重要的观察结果并不能解释 PKM 如何克服蛋白质周转和扩散的自然降解效应。该提议的中心假设是,PKM??通过控制自身的合成,可以形成双稳态系统,可以解释突触特异性长期可塑性和记忆的维持。在这里,我们建议在生物物理模型中以数学方式表述这一假设,并分析该模型以提出可检验的实验预测。然后,我们将使用为测试该理论而定制的新技术,直接测试对 PKM?介导的持续突触增强的这些预测。智力优点:PKM 对于维持突触可塑性和长期记忆来说既是必要也是充分的这一发现从根本上改变了学习和记忆领域,但关于真正能够实现持久性的机制还有很多需要了解长期可塑性和记忆力。该提案采用理论和实验相结合的方法解决了这些问题。这种双稳定性取决于翻译调节的理论不仅对于神经科学而且对于一般生物学来说都是新颖的。我们的合作具有独特的资格来开展拟议的工作,因为 Shouval 实验室在与实验组合作建模突触可塑性方面拥有丰富的经验,而 Sacktor 实验室开创了 PKM 科学,并对拟议的技术拥有丰富的经验。实验技术包括测试预测所需的两种新方法。首先,我们建议测试模型对 L-LTP 中蛋白质翻译的预测,不是通过可能存在毒性和间接影响问题的一般蛋白质合成抑制剂,而是通过使用针对 PKM??mRNA 翻译起始位点的反义寡脱氧核苷酸在诱导和维持过程中特异性阻断 PKM 合成。其次,由于 PKM® 介导的增强既高度稳定又可快速逆转,我们将使用专为 L-LTP 维持研究而优化的快流海马切片室来测试模型的关键预测。所提出的平移依赖性双稳定性的随机模拟在计算生物学中也是新颖的。更广泛的影响:作为第一个被证明的大脑中依赖经验的长期信息存储的分子机制,PKM 具有重大的临床意义,并且在去年已被证明有助于多种神经系统的生物学以及精神疾病,包括创伤后应激障碍、中枢神经性疼痛和药物滥用。为了帮助许多实验室对 PKM 的兴趣迅速增长,我们将使我们的模型可供更大的社区使用,允许其他科学家测试、修改并将他们的发现纳入模型中,从而加快科学发展的步伐发现。由于 NSF 的一个重要目标是将研究和教育结合起来,因此我们将培养多元化的学生。我们的实验室已经培训本科生,Shouval 实验室每年夏天招收本科生通过 REU 项目(PI S. Cox,Rice)和 UT 系统补助金(PI H. Shouval),全年招收当地本科生,Sacktor 实验室有着指导当地弱势高中生的悠久历史(例如,通过英特尔计划)。两个实验室都致力于公共宣传;例如,一篇关于 PKM 和内存的文章登上了《纽约时报》的头版。我们渴望将这种类型的推广扩展到生物科学理论与实验之间相互作用的领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HAREL Zeev SHOUVAL其他文献

HAREL Zeev SHOUVAL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HAREL Zeev SHOUVAL', 18)}}的其他基金

CRCNS: PKMzeta-Dependent Protein Synthesis Maintains Synaptic Plasticity
CRCNS:PKMzeta 依赖性蛋白质合成维持突触可塑性
  • 批准号:
    9059060
  • 财政年份:
    2012
  • 资助金额:
    $ 27.6万
  • 项目类别:
CRCNS: PKMzeta-Dependent Protein Synthesis Maintains Synaptic Plasticity
CRCNS:PKMzeta 依赖性蛋白质合成维持突触可塑性
  • 批准号:
    8840208
  • 财政年份:
    2012
  • 资助金额:
    $ 27.6万
  • 项目类别:
CRCNS: PKMzeta-Dependent Protein Synthesis Maintains Synaptic Plasticity
CRCNS:PKMzeta 依赖性蛋白质合成维持突触可塑性
  • 批准号:
    8444766
  • 财政年份:
    2012
  • 资助金额:
    $ 27.6万
  • 项目类别:
CRCNS: PKMzeta-Dependent Protein Synthesis Maintains Synaptic Plasticity
CRCNS:PKMzeta 依赖性蛋白质合成维持突触可塑性
  • 批准号:
    8652969
  • 财政年份:
    2012
  • 资助金额:
    $ 27.6万
  • 项目类别:
An Integrated Approach to Synaptic Plasticity in the Hippocampus
海马突触可塑性的综合方法
  • 批准号:
    6995174
  • 财政年份:
    2005
  • 资助金额:
    $ 27.6万
  • 项目类别:
An Integrated Approach to Synaptic Plasticity in the Hippocampus
海马突触可塑性的综合方法
  • 批准号:
    7312744
  • 财政年份:
  • 资助金额:
    $ 27.6万
  • 项目类别:
An Integrated Approach to Synaptic Plasticity in the Hippocampus
海马突触可塑性的综合方法
  • 批准号:
    7463735
  • 财政年份:
  • 资助金额:
    $ 27.6万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
  • 批准号:
    10633905
  • 财政年份:
    2023
  • 资助金额:
    $ 27.6万
  • 项目类别:
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
  • 批准号:
    10649741
  • 财政年份:
    2023
  • 资助金额:
    $ 27.6万
  • 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
  • 批准号:
    10661931
  • 财政年份:
    2023
  • 资助金额:
    $ 27.6万
  • 项目类别:
Interrogating human anti-staphylococcal antibody responses for S. aureus vaccine insights
探究人类抗葡萄球菌抗体反应以获得金黄色葡萄球菌疫苗见解
  • 批准号:
    10826874
  • 财政年份:
    2023
  • 资助金额:
    $ 27.6万
  • 项目类别:
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
  • 批准号:
    10716509
  • 财政年份:
    2023
  • 资助金额:
    $ 27.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了