Role of circadian clocks in maintaining a healthy nervous system
生物钟在维持神经系统健康中的作用
基本信息
- 批准号:8176952
- 负责人:
- 金额:$ 23.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAnabolismAnimalsAntioxidantsApoptosisBasic ScienceBiochemistryBiologicalBiological ModelsBiologyBrainBrain PathologyCellsCircadian RhythmsDataDiseaseDrosophila genusDrosophila melanogasterEnzyme GeneEnzymesFeedbackGene Expression RegulationGene TargetingGenesGlutamate-Cysteine LigaseGlutathioneGlutathione DisulfideHealthHomeostasisHumanImpairmentLeadLinkLipid PeroxidesLipidsMeasuresMedicalMessenger RNAMolecularMotorNerve DegenerationNervous system structureNeuronsOrganismOxidation-ReductionOxidative StressParkinson DiseasePathway interactionsPeripheralPhenotypePreventionProteinsPublic HealthReactive Oxygen SpeciesRegulationResearchRisk FactorsRoleSchizophreniaSystemTestingTimeTissuesWorkage effectage relatedcircadian pacemakerenzyme biosynthesisflygenetic manipulationimprovedinnovationinsightinterdisciplinary collaborationnervous system disordernormal agingnovelnovel strategiesoxidative damagepreventrepairedresearch study
项目摘要
DESCRIPTION (provided by applicant): The long term objective of this research is to define molecular pathways by which the circadian clock regulates neuronal health. Circadian clocks are molecular feedback loops that generate daily cellular rhythms in the brain and various peripheral tissues. Disruption of the circadian clock has been implicated in neurological disorders but the underling mechanisms connecting the clock to neuronal health are not understood. We have recently shown that loss of the circadian clock in Drosophila dramatically increased accumulation of oxidatively damaged proteins, lipids peroxides, and caused neurodegenerative changes in the brain. Furthermore, we identified a daily rhythm in levels of reactive oxygen species (ROS), while ROS was constantly elevated in flies with a disrupted circadian clock. Molecular oxidative damage is a significant risk factor for age-related neurological disorders and glutathione (GSH) is a key antioxidant that protects neuronal cells against oxidative stress. Depleted GSH levels are found in a number of neurological disorders including schizophrenia, Parkinson's, and Alzheimer's diseases as well as in normal aging. To counteract neurological diseases, basic research is needed to understand mechanisms regulating GSH homeostasis. We obtained exciting preliminary data suggesting that GSH synthesis may be controlled by the circadian clock. We revealed a circadian rhythm in the expression of the catalytic (GCLc) and modulatory (GCLm) subunits of glutamate cysteine ligase (GCL), which is the rate-limiting enzyme in GSH biosynthesis, as well as daily rhythmic changes in GSH levels. These rhythms were abolished in flies with a genetically disrupted circadian clock and in older flies, whose circadian clock becomes impaired. We hypothesize that the circadian clock modulates GSH biosynthesis, and that temporal regulation of GSH homeostasis results in efficient prevention/repair of oxidative damage and protection of the nervous system. To test this hypothesis, we propose an interdisciplinary collaboration using the excellent model system Drosophila melanogaster. In aim 1, we will determine roles of circadian clocks in the regulation of glutathione biosynthesis in the brain. We will then explore functional links between rhythms in GSH biosynthesis and neuronal health in aim 2. Finally, in aim 3 we will determine the effect of an aging circadian clock on the GSH system and neuronal health. Public health significance: Insights obtained from this work may lead to novel strategies to avert neurodegeneration in aging humans, which is a critically important medical and societal issue.
PUBLIC HEALTH RELEVANCE: Disruption of the biological (circadian) clock has been implicated in neurological disorders but the underling mechanisms connecting the clock to neuronal health are not understood. The proposed studies will determine how the clock regulates biosynthesis of glutathione, a key antioxidant that is depleted in many neurological disorders including schizophrenia, Parkinson's, and Alzheimer's diseases. Insights obtained from this work may lead to novel strategies to avert neurodegeneration in aging humans, which is a critically important medical and societal issue.
描述(由申请人提供):本研究的长期目标是确定生物钟调节神经元健康的分子途径。昼夜节律钟是分子反馈回路,可在大脑和各种外周组织中产生日常细胞节律。生物钟的破坏与神经系统疾病有关,但将生物钟与神经元健康联系起来的基本机制尚不清楚。我们最近发现,果蝇生物钟的丧失会显着增加氧化损伤蛋白质、脂质过氧化物的积累,并引起大脑的神经退行性变化。此外,我们还发现了活性氧(ROS)水平的每日节律,而在生物钟被破坏的果蝇中,ROS 不断升高。分子氧化损伤是与年龄相关的神经系统疾病的重要危险因素,而谷胱甘肽 (GSH) 是保护神经元细胞免受氧化应激的关键抗氧化剂。谷胱甘肽水平降低存在于许多神经系统疾病中,包括精神分裂症、帕金森病和阿尔茨海默病以及正常衰老过程。为了对抗神经系统疾病,需要进行基础研究来了解 GSH 稳态的调节机制。我们获得了令人兴奋的初步数据,表明 GSH 合成可能受生物钟控制。我们揭示了谷氨酸半胱氨酸连接酶 (GCL) 的催化 (GCLc) 和调节 (GCLm) 亚基(GCL 是 GSH 生物合成中的限速酶)表达的昼夜节律,以及 GSH 水平的每日节律变化。在生物钟基因被破坏的果蝇和生物钟受损的老年果蝇中,这些节律被废除。我们假设生物钟调节 GSH 生物合成,并且 GSH 稳态的时间调节可有效预防/修复氧化损伤并保护神经系统。为了检验这一假设,我们提出使用优秀的模型系统果蝇进行跨学科合作。在目标 1 中,我们将确定生物钟在大脑谷胱甘肽生物合成调节中的作用。然后,我们将在目标 2 中探索 GSH 生物合成节律与神经元健康之间的功能联系。最后,在目标 3 中,我们将确定衰老生物钟对 GSH 系统和神经元健康的影响。公共健康意义:从这项工作中获得的见解可能会带来避免老年人神经退行性疾病的新策略,这是一个至关重要的医学和社会问题。
公共健康相关性:生物(昼夜节律)时钟的破坏与神经系统疾病有关,但将生物钟与神经元健康联系起来的基本机制尚不清楚。拟议的研究将确定时钟如何调节谷胱甘肽的生物合成,谷胱甘肽是一种关键的抗氧化剂,在许多神经系统疾病(包括精神分裂症、帕金森病和阿尔茨海默病)中都会被耗尽。从这项工作中获得的见解可能会带来避免老年人神经退行性变的新策略,这是一个至关重要的医学和社会问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jadwiga M Giebultowicz其他文献
Jadwiga M Giebultowicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jadwiga M Giebultowicz', 18)}}的其他基金
Circadian regulation of neuroprotective genes during aging
衰老过程中神经保护基因的昼夜节律调节
- 批准号:
9111180 - 财政年份:2016
- 资助金额:
$ 23.08万 - 项目类别:
Exploring links between circadian clocks and aging.
探索生物钟与衰老之间的联系。
- 批准号:
8225201 - 财政年份:2011
- 资助金额:
$ 23.08万 - 项目类别:
Role of circadian clocks in maintaining a healthy nervous system
生物钟在维持神经系统健康中的作用
- 批准号:
8288704 - 财政年份:2011
- 资助金额:
$ 23.08万 - 项目类别:
Role of circadian clocks in maintaining a healthy nervous system
生物钟在维持神经系统健康中的作用
- 批准号:
8458655 - 财政年份:2011
- 资助金额:
$ 23.08万 - 项目类别:
Exploring links between circadian clocks and aging.
探索生物钟与衰老之间的联系。
- 批准号:
8030253 - 财政年份:2011
- 资助金额:
$ 23.08万 - 项目类别:
Exploring links between circadian clocks and aging.
探索生物钟与衰老之间的联系。
- 批准号:
8265501 - 财政年份:2011
- 资助金额:
$ 23.08万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 23.08万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 23.08万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 23.08万 - 项目类别: