Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
基本信息
- 批准号:8518406
- 负责人:
- 金额:$ 34.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdherenceAdhesionsAdhesivenessAdhesivesAgeAgingAntitoxinsApoptosisAreaAtomic Force MicroscopyBacteriaBacterial InfectionsBase SequenceBindingBiochemicalBiocompatible MaterialsBiologicalBiological ProcessBiophysicsCaulobacterCaulobacter crescentusCell DeathCellsChemicalsDNADNA BindingDNA SequenceDataDeacetylaseDeacetylationDentalDevelopmentEmployee StrikesEnvironmentExhibitsFluorescence MicroscopyFresh WaterFutureGenesGeneticGoalsHuman ActivitiesHuman bodyImageInfectionIonic StrengthsKineticsMarinesMeasuresMechanicsMedicalMethodsMicrobial BiofilmsMutationOperative Surgical ProceduresOxygenPolysaccharidesProductionPropertyResearchResolutionRoleSalineSolutionsSolventsSpecificitySpectrum AnalysisStructureSurfaceSystemTestingToxinbasecrosslinkdesignextracellularimprovedinhibitor/antagonistinsightinterdisciplinary approachmutantpathogenphysical propertypolysaccharide deacetylaseresearch studyresponseshear stress
项目摘要
DESCRIPTION (provided by applicant): Bacteria often utilize polysaccharides as adhesive structures to attach to surfaces, to form biofilms, and to infect host cells. In addition, polysaccharides hold strong promise as biological adhesives in many areas of human activity, including as dental and surgical adhesives. The bacterium Caulobacter crescentus synthesizes a polysaccharide called the holdfast that exhibits and impressive adhesive force. Contrary to most commercial adhesives, holdfasts adhere tightly to a variety of surfaces in both freshwater and marine environments. Such a property is critical for medical applications in the human body. The general goal of this research is to use a multidisciplinary approach ranging from genetics to biophysics to study the chemical and biophysical basis for holdfast properties and to understand how holdfast properties are modulated by deacetylation and inhibition by extracellular DNA (eDNA). The project has three specific aims. The first aim is to determine the biophysical basis for holdfast adhesiveness. Atomic force microscopy (AFM) will be used to systematically study the influence of surface roughness, shear stress, surface composition, ionic strength, and pH on holdfast adhesion in order to provide a better understanding of the mechanism of holdfast adhesion and adhesion control. The second aim is to determine the role of deacetylation in holdfast anchoring and adhesive properties. A holdfast polysaccharide deacetylase mutant causes the release of non-adherent holdfast in solution. The composition and structure of the holdfast polysaccharide will be determined from normal and deacetylase mutant cells. AFM force spectroscopy and high-resolution fluorescence microscopy will be used to determine the role of deacetylation on holdfast adhesiveness and cohesiveness. Biochemical experiments will be used to study the role of deacetylation in anchoring the holdfast to the cell. Finally, similar studies of the holdfast of marine species will provide better biomaterials for potential applications in the saline environment of the human body. The third aim is to determine the biological basis for the recently discovered mechanism of eDNA inhibition of holdfast adherence. The role of a toxin-antitoxin system in the production of eDNA by programmed cell death will be studied and the basis for the sequence specificity of holdfast inhibition will be determined. AFM indentation studies and simultaneous AFM imaging and Raman scattering spectroscopy of holdfasts bound or not to eDNA will be used to determine how specific DNA alters the structure and structural properties of the holdfast. Results from the proposed studies will provide insight into the basic mechanisms for the impressive adhesive properties of the holdfast and modulation of these properties, paving the way for the future development of the holdfast as a biological adhesive. In addition, results of these studies will provide insights into
the mechanism of polysaccharide adhesiveness in general, as well as for strategies to inhibit polysaccharide adhesion, for example during infection by pathogens.
描述(由申请人提供):细菌经常利用多糖作为粘合结构,以附着在表面上,形成生物膜并感染宿主细胞。此外,在人类活动的许多领域,包括牙科和外科粘合剂,多糖作为生物粘合剂具有很大的希望。细菌caulobacter Crescentus合成了一种称为Holdfast的多糖,表现出了令人印象深刻的粘合力。与大多数商业粘合剂相反,Holdfasts紧密地粘附在淡水和海洋环境中的各种表面。这种特性对于人体的医疗应用至关重要。这项研究的一般目标是使用从遗传学到生物物理学的多学科方法来研究持有特性的化学和生物物理基础,并了解如何通过脱乙酰基化和通过细胞外DNA(EDNA)抑制持续性的性能来调节持有性能。该项目具有三个特定的目标。第一个目的是确定持有粘合剂的生物物理基础。原子力显微镜(AFM)将用于系统地研究表面粗糙度,剪切应力,表面组成,离子强度和pH值对持有快速粘附的影响,以便更好地了解持有的固定粘附和粘附控制机制。第二个目的是确定脱乙酰化在固定锚定和粘合特性中的作用。固定快速多糖脱乙酰基酶突变剂导致溶液中非粘附的持有释放。 Holdfast多糖的组成和结构将由正常和脱乙酰基酶突变细胞确定。 AFM力光谱和高分辨率荧光显微镜将用于确定脱乙酰化对持有的粘附性和凝聚力的作用。生化实验将用于研究脱乙酰化在将固定固定固定到细胞中的作用。最后,对海洋物种持有的类似研究将为人体盐环境中的潜在应用提供更好的生物材料。第三个目的是确定最近发现的EDNA抑制持续性机制的生物学基础。将研究毒素 - 抗毒素系统在通过程序性细胞死亡产生EDNA中的作用,并将确定Holdfast抑制的序列特异性的基础。 AFM凹痕研究和同时进行的AFM成像以及与EDNA结合或不与EDNA的持有的拉曼散射光谱法被用来确定特定的DNA如何改变Holdfast的结构和结构特性。拟议的研究的结果将洞悉持有和调节这些特性的令人印象深刻的粘合性特性的基本机制,从而为Holdfast作为生物粘合剂的未来发展铺平了道路。此外,这些研究的结果将为您提供见解
多糖粘附性的机制通常以及抑制多糖粘附的策略,例如在病原体感染期间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YVES V BRUN其他文献
YVES V BRUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YVES V BRUN', 18)}}的其他基金
Bacterial Subcellular Organization and its Impact on Growth, Development, Aging, and Surface Adhesion
细菌亚细胞组织及其对生长、发育、衰老和表面粘附的影响
- 批准号:
9276966 - 财政年份:2017
- 资助金额:
$ 34.55万 - 项目类别:
2014 Bacterial Cell Surfaces Gordon Research Conference
2014年细菌细胞表面戈登研究会议
- 批准号:
8785778 - 财政年份:2014
- 资助金额:
$ 34.55万 - 项目类别:
Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
- 批准号:
8344340 - 财政年份:2012
- 资助金额:
$ 34.55万 - 项目类别:
Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
- 批准号:
8656372 - 财政年份:2012
- 资助金额:
$ 34.55万 - 项目类别:
相似国自然基金
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别: