IRGA-Live Clamp: An integrated infrared gas-analysis platform to investigate systemic signalling within the plant canopy

IRGA-Live Clamp:用于研究植物冠层内系统信号传导的集成红外气体分析平台

基本信息

  • 批准号:
    BB/W020289/1
  • 负责人:
  • 金额:
    $ 33.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Continued global warming is drastically changing weather patterns, with both daily and seasonal extremes that limit crop productivity. Approaches to address this problem include mitigation through human intervention (e.g. irrigation, polytunnels, controlled environment agriculture), or by introducing genetic editing to optimise crops' responses. However, in each of these cases we lack an understanding of how plants respond to the interventions at an organismal level. For example, in the presence of drought (more prevalent during the summer when temperatures are higher) how do plants balance water retention against the need for evaporative cooling and photosynthesis? Stomatal pores within the leaf surface are crucial in this response, with plants integrating multiple environmental signals to control gas exchange between the leaf interior and the environment. While the behaviour of single leaves is well understood, we have not assessed how the entire canopy responds to environmental stress. Do they divide up tasks between different leaves? How would this be co-ordinated - can plant leaves talk to each other? New results from our laboratories have shown that a soybean leaf opens the stomata under heat stress but closes them when heat stress is accompanied by low humidity. Thus, in this leaf water retention is prioritised. Neighbouring leaves, even if not stressed themselves, also react with changes in stomatal behaviour. This reflects a process called systemic signaling in which the non-stressed leaves 'receive' mobile signals from the stressed 'sender' leaf. Surprisingly, our findings indicate that 'receiver' leaves react differently depending on whether they are positioned above or below the 'sender' leaf, showing either stomatal opening or closure. These data demonstrate that plant leaves can communicate with each other, and they divide up tasks between different parts of the canopy. It is likely that this strategy improves the overall plant performance. However, the findings also pose many new questions; what are the signals, why does position matter, do natural gradients of light across the canopy alter responses and performance, how do disease or pests interfere with the systemic signaling of heat and drought? And how can we quantify the potential gains? Plant photosynthetic performance and gas exchange are routinely monitored using infrared gas analysis (IRGA) to measures the exchange of carbon dioxide and water across the leaf. Until now, scientists have used one IRGA machine at a time to measure gas exchange in one leaf in one plant (or in several plants with multiplexed headsets controlled from one console). We will advance the state of the art by integrating several IRGA machines to enable the individual control of environmental conditions in multiple leaves whilst simultaneously recording their gas exchange and photosynthetic performance. Crucially, we will apply networking technologies to integrate the functions of individual IRGA machines. This will allow data obtained from one leaf to drive protocols applied to other leaves. We call this 'IRGA-Live Clamp' in analogy to similar approaches used in neurophysiology. Due to the novelty of the IRGA-Live Clamp platform and the opportunities to answer important research questions many researchers from across the UK will be interested to use the IRGA-Live Clamp platform installed at the University of Glasgow to investigate different questions, fostering new collaborations. For example, we will be able to leverage optogenetic expertise to understand how artificial lighting can be used to optimise gas exchange. The IRGA-Live Clamp platform will therefore enable major progress in scientific knowledge and help solving fundamental questions that are important for plant stress tolerance and agriculture. The funds will therefore contribute to food security under climate change and provide a step-change in photosynthetic research capability within the UK.
持续的全球变暖正在极大地改变天气模式,每日和季节性的极端天气都限制了农作物的生产力。解决这一问题的方法包括通过人为干预(例如灌溉、塑料隧道、受控环境农业)来缓解,或通过引入基因编辑来优化作物的反应。然而,在每种情况下,我们都缺乏对植物如何在有机体水平上响应干预措施的了解。例如,在出现干旱的情况下(在气温较高的夏季更为普遍),植物如何平衡水分保留与蒸发冷却和光合作用的需求?叶子表面内的气孔在这种响应中至关重要,植物整合多种环境信号来控制叶子内部和环境之间的气体交换。虽然单叶的行为已得到充分了解,但我们尚未评估整个树冠如何应对环境压力。他们是否在不同的叶子之间分配任务?这是如何协调的——植物叶子可以互相交谈吗?我们实验室的新结果表明,大豆叶子在热应激下会打开气孔,但在热应激伴随低湿度时会关闭气孔。因此,在这片叶子中,保水是优先考虑的。邻近的叶子,即使本身没有受到压力,也会对气孔行为的变化做出反应。这反映了一种称为系统信号传递的过程,其中未受胁迫的叶子从受胁迫的“发送者”叶子“接收”移动信号。令人惊讶的是,我们的研究结果表明,“接收者”叶子的反应不同,具体取决于它们位于“发送者”叶子的上方还是下方,显示气孔打开或关闭。这些数据表明植物叶子可以相互通信,并且它们在冠层的不同部分之间分配任务。该策略可能会提高工厂的整体绩效。然而,研究结果也提出了许多新问题;信号是什么,为什么位置很重要,树冠上的自然光梯度是否会改变反应和性能,疾病或害虫如何干扰炎热和干旱的系统信号?我们如何量化潜在收益?通常使用红外气体分析 (IRGA) 来监测植物光合作用性能和气体交换,以测量叶片上二氧化碳和水的交换。到目前为止,科学家们一次使用一台 IRGA 机器来测量一株植物(或通过一个控制台控制多路耳机的多株植物)一片叶子的气体交换。我们将通过集成多台 IRGA 机器来推进最先进的技术,从而能够单独控制多个叶子的环境条件,同时记录它们的气体交换和光合作用性能。至关重要的是,我们将应用网络技术来集成各个 IRGA 机器的功能。这将允许从一个叶子获得的数据驱动应用于其他叶子的协议。我们将此称为“IRGA-Live Clamp”,类似于神经生理学中使用的类似方法。由于 IRGA-Live Clamp 平台的新颖性以及回答重要研究问题的机会,来自英国各地的许多研究人员将有兴趣使用格拉斯哥大学安装的 IRGA-Live Clamp 平台来研究不同的问题,从而促进新的合作。例如,我们将能够利用光遗传学专业知识来了解如何使用人工照明来优化气体交换。因此,IRGA-Live Clamp 平台将推动科学知识取得重大进展,并帮助解决对植物抗逆性和农业至关重要的基本问题。因此,这些资金将为气候变化下的粮食安全做出贡献,并为英国的光合作用研究能力提供阶跃性的改变。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls.
光合气体交换测量指南:基本原理、最佳实践和潜在陷阱。
  • DOI:
    10.1111/pce.14815
  • 发表时间:
    2024-02-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Florian A. Busch;Elizabeth A Ainsworth;A. Amtmann;Am;a P. Cavanagh;a;S. Driever;J. Ferguson;J. Kromdijk;Tracy Lawson;A. Leakey;Jack S. A. Matthews;Katherine Meacham;Richard L. Vath;S. Vialet;Berkley J. Walker;Maria Papanatsiou
  • 通讯作者:
    Maria Papanatsiou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Amtmann其他文献

Procédés et moyens pour augmenter la tolérance aux contraintes et la biomasse dans des plantes
增强耐受性、限制性和植物生物质的过程和方法
  • DOI:
  • 发表时间:
    2014-01-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Amtmann;M. Hannah;Veronique Gossele;Manuel Lopez;Giorgio Perrella;Christoph Verduyn
  • 通讯作者:
    Christoph Verduyn

Anna Amtmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Amtmann', 18)}}的其他基金

ABA transport at the nexus of nutrient deficiency and water stress in plants
ABA 转运与植物营养缺乏和水分胁迫的关系
  • 批准号:
    BB/X002721/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.86万
  • 项目类别:
    Research Grant
Exploring chemical 'de-priming' and quantitative genetics to improve growth and yield of soybean under abiotic stress.
探索化学“去启动”和定量遗传学,以改善非生物胁迫下大豆的生长和产量。
  • 批准号:
    BB/R019894/1
  • 财政年份:
    2018
  • 资助金额:
    $ 33.86万
  • 项目类别:
    Research Grant
Perception and integration of nutritional signals in plant root systems: Solving the mystery of K-Fe-P interactions.
植物根系中营养信号的感知和整合:解决 K-Fe-P 相互作用之谜。
  • 批准号:
    BB/N018508/1
  • 财政年份:
    2016
  • 资助金额:
    $ 33.86万
  • 项目类别:
    Research Grant
The novel gene 'Histone Deacetylase Complex 1' enhances plant growth and abiotic stress tolerance; where, when and with whom?
新基因“组蛋白脱乙酰酶复合物 1”增强植物生长和非生物胁迫耐受性;
  • 批准号:
    BB/K008218/1
  • 财政年份:
    2013
  • 资助金额:
    $ 33.86万
  • 项目类别:
    Research Grant
Bio-desalination: from cell to tap
生物海水淡化:从细胞到自来水
  • 批准号:
    EP/J004871/1
  • 财政年份:
    2011
  • 资助金额:
    $ 33.86万
  • 项目类别:
    Research Grant
Bio-desalination: from cell to tap
生物海水淡化:从细胞到自来水
  • 批准号:
    EP/J004871/1
  • 财政年份:
    2011
  • 资助金额:
    $ 33.86万
  • 项目类别:
    Research Grant
Inorganic ions and plant metabolism: targets signals and responses
无机离子和植物代谢:目标信号和响应
  • 批准号:
    BB/D006775/1
  • 财政年份:
    2006
  • 资助金额:
    $ 33.86万
  • 项目类别:
    Research Grant

相似国自然基金

立体化居住环境对幸福感的结构化影响及时空效应研究
  • 批准号:
    42371215
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于计算机视觉的北京老旧居住建筑立面品质测评与生成式更新设计研究
  • 批准号:
    52378022
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大城市新市民居住迁移的时空特征、机理及对策研究-以广州市为例
  • 批准号:
    42371208
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
城市更新影响域内居住群体社会空间分异与融合机制研究
  • 批准号:
    72374166
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
融合三维建筑格局和绿地气动特征的居住区热环境时空分布与形成机制
  • 批准号:
    32301658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

MICT1 function in thermogenesis
MICT1 在生热作用中的功能
  • 批准号:
    10570388
  • 财政年份:
    2023
  • 资助金额:
    $ 33.86万
  • 项目类别:
Elucidating the dynamic role of PTPsigma in synaptic nano-organization and NMDA receptor function
阐明 PTPsigma 在突触纳米组织和 NMDA 受体功能中的动态作用
  • 批准号:
    10606077
  • 财政年份:
    2023
  • 资助金额:
    $ 33.86万
  • 项目类别:
Metabolic Phenotyping in Live Models of Obesity and Diabetes
肥胖和糖尿病活体模型的代谢表型分析
  • 批准号:
    10588794
  • 财政年份:
    2023
  • 资助金额:
    $ 33.86万
  • 项目类别:
Gravida traumatic brain injury (TBI) impacts neurodevelopment of the offspring
妊娠创伤性脑损伤(TBI)影响后代的神经发育
  • 批准号:
    10734284
  • 财政年份:
    2023
  • 资助金额:
    $ 33.86万
  • 项目类别:
Vanderbilt Center for Metabolic Phenotyping in Live Models of Obesity and Diabetes
范德比尔特肥胖和糖尿病活体模型代谢表型中心
  • 批准号:
    10588959
  • 财政年份:
    2023
  • 资助金额:
    $ 33.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了