Systems Approach to Modeling of Drug Use Recovery
药物使用回收建模的系统方法
基本信息
- 批准号:8416409
- 负责人:
- 金额:$ 24.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-15 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectAlcoholsAttentionBiological ModelsCase ManagementCharacteristicsChronicChronic DiseaseCollaborationsCommunicable DiseasesCommunitiesComplexContinuity of Patient CareCrack CocaineData SetDatabasesDevelopmentDiseaseDrug usageEnvironmentEnvironmental PolicyGoalsHealth systemHeroinHeroin DependenceIllicit DrugsImprisonmentIndividualInfluentialsInpatientsInterventionKnowledgeLaw EnforcementLeadLinkLiteratureMaintenance TherapyMarketingMethadoneMethamphetamineModalityModelingMonitorOutcomeOutpatientsPatientsPatternPeer ReviewPharmaceutical PreparationsPilot ProjectsPoliciesPreventionProcessPublicationsRecoveryRelapseResearchResearch PersonnelResistanceServicesSimulateSocial NetworkStagingStructureSystemTestingTreatment EffectivenessTypologyWorkaddictionbasecontextual factorsdrug marketexperiencemethadone maintenancepreventresearch studysuccesstreatment strategy
项目摘要
DESCRIPTION (provided by applicant): This pilot study will build an agent-based model that will describe heroin use and recovery trajectories in the context of complex interconnections with current treatment practices, recovery-oriented services, and the illicit drug market. Treatment of heroin addiction is associated with a chronic cycle of relapse, treatment reentry, and recovery, often lasting for decades. The most commonly used treatment for heroin addiction is methadone therapy, which is pharmacologically efficient, but due to a complex interaction of organizational, community, and policy factors that affect relapse to heroin use, it is not always optimally effective and is thus unable to prevent relapse in many addicts. To date, a number of studies have collected information about heroin addiction recovery trajectories; however no model has yet been developed to integrate influential factors into one model, considering them as part of a system. The proposed effort represents the first systems modeling approach to address the topic of heroin recovery, including influences from contextual factors. Accordingly, the development of the proposed model simultaneously takes into account characteristics of heroin addiction treatment strategies (e.g., residential vs. outpatient modality) and the user's contextual environment (e.g., social networks, illicit drug markets) to more aptly assess the processes that promote or, conversely, interfere with recovery. Model parameters will be obtained from well studied datasets on heroin use trajectories identified by leading experts from UCLA and Chestnut Health Systems, as well as from other relevant studies. The resulting model will be used to address questions about the optimal combination and staging of treatment approaches and to explore whether some combinations could lead to qualitative (e.g., cessation) rather than simply quantitative (e.g., delayed relapse) changes in recovery cycle. Specifically, we aim to (1) Develop an agent-based model of heroin use and recovery process that would describe the main systems components influencing the success of recovery, (2) Through simulated experiments, evaluate the success of specific complex strategies aimed to increase treatment effectiveness, and (3) Evaluate the feasibility of approaches that show the most promise, address potential resistance to policy strategies, and evaluate generalizability of the model in regard to other drug treatments.
描述(由申请人提供):这项试点研究将建立一个基于代理的模型,该模型将在与当前治疗实践,面向恢复的服务和非法药物市场的复杂互连的背景下描述海洛因使用和恢复轨迹。海洛因成瘾的治疗与经常持续数十年的复发,治疗再入和恢复的慢性循环有关。海洛因成瘾的最常用治疗方法是美沙酮疗法,这在药理学上是有效的,但是由于影响海洛因复发的组织,社区和政策因素的复杂相互作用,它并不总是具有最佳有效性,因此无法防止许多成瘾者复发。迄今为止,许多研究收集了有关海洛因成瘾恢复轨迹的信息;但是,尚未开发任何模型将影响因素整合到一个模型中,将其视为系统的一部分。拟议的工作代表了解决海洛因恢复主题的第一个系统建模方法,包括对上下文因素的影响。因此,提出的模型的开发同时考虑了海洛因成瘾治疗策略(例如,住宅与门诊模式)和用户的上下文环境(例如,社交网络,非法药物市场)的特征,以更恰当地评估促进或相反的过程,从而促进恢复。模型参数将从研究良好的数据集获得有关UCLA和Chestnut Health Systems以及其他相关研究的领先专家确定的海洛因使用轨迹的数据集。所得模型将用于解决有关治疗方法最佳组合和分期的问题,并探索某些组合是否会导致定性(例如,停止),而不是简单的定量(例如,延迟延迟复发)恢复周期的变化。具体而言,我们的目标是(1)开发一种基于代理的海洛因使用和恢复过程模型,该模型将描述影响恢复成功的主要系统组件,(2)通过模拟实验评估旨在提高治疗效果的特定复杂策略的成功,(3)评估对策略策略的潜在抵抗,并评估对策略策略的潜在抵抗力,并评估对策略的抗衡性,并评估了对策略的影响,并确定了该模型的知名度,并确定了该模型的知名度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGIY BOBASHEV其他文献
GEORGIY BOBASHEV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGIY BOBASHEV', 18)}}的其他基金
Supplement for Cloud Computing: Opioid Policy Models
云计算的补充:阿片类药物政策模型
- 批准号:
10826888 - 财政年份:2020
- 资助金额:
$ 24.13万 - 项目类别:
Systems Approach to Modeling of Drug Use Recovery
药物使用回收建模的系统方法
- 批准号:
8224973 - 财政年份:2012
- 资助金额:
$ 24.13万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 24.13万 - 项目类别:
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 24.13万 - 项目类别:
Competitive Bidding in Medicare and the Implications for Home Oxygen Therapy in COPD
医疗保险竞争性招标以及对慢性阻塞性肺病家庭氧疗的影响
- 批准号:
10641360 - 财政年份:2023
- 资助金额:
$ 24.13万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 24.13万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 24.13万 - 项目类别: