Inferring Mammalian Transcriptional Regulatory Networks from Epigenomics
从表观基因组学推断哺乳动物转录调控网络
基本信息
- 批准号:8536867
- 负责人:
- 金额:$ 32.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-10 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlgorithmsAntibodiesAutomobile DrivingBackBacteriaBindingBinding SitesBiological ProcessBiomedical ResearchBreast Cancer CellCancer cell lineCell Differentiation processCell Fate ControlCell LineCellsChIP-on-chipChIP-seqCommunitiesComputational algorithmComputer SimulationComputing MethodologiesDNADataDiseaseEpigenetic ProcessEpithelial CellsEtiologyEventExcisionFatty acid glycerol estersGene ExpressionGene TargetingGenesGenomeGenomicsHistonesHumanIndiumInjuryKnowledgeLinkLocationMalignant NeoplasmsMapsMethodsModelingMolecularMolecular ProfilingMusMuscleMyoblastsNucleosomesObesityPhysiologyPositioning AttributeProcessRegulationRelative (related person)ResolutionResourcesSignal TransductionStimulusStudy modelsSystemTechnologyTestingTherapeutic InterventionTimeTranscription factor genesVitamin DWorkYeastsbiological systemsbonecostepigenomicsgenome-wideimprovedinterestmalignant breast neoplasmresponsesmall hairpin RNAstem cell differentiationstem cell fatetranscription factortranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Deciphering the transcriptional regulatory network (TRN) governing a biological process in mammalian systems is essential to our understanding of basic mechanisms underlying normal physiology as well as disease etiology. It is a daunting task because too many links in the TRN are unknown. The emergence of ChIP-chip and ChIP-seq technologies has enabled the mapping of the genome-wide binding sites of many transcription factors (TFs) known to be key regulators in a biological process. However, these two technologies are limited to the known regulators with ChIP-quality antibodies. We found that TF binding is often associated with a dynamic histone mark signature and can be computationally predicted from the genome-wide histone mark dynamics. Therefore, we hypothesize that with time-course nucleosome-resolution ChIP-seq of a few informative histone marks and RNA-seq data of gene expression, and effective computational modeling, we could infer the TRNs in mammalian biological processes. Specifically, we propose to develop effective computational algorithms to achieve Aim1: first, predict TF binding from nucleosome-resolution histone mark dynamics; second, identify target genes from TF binding, histone marks and gene expression profiles; and third, infers the TRN over a time course. We also propose to apply the above algorithms in two biological systems in Aim 2. One is the mouse myoblast cell line C2C12 differentiation into bone, fat, or muscle, and the other is the human apocrine breast cancer cell line MDA-MB-453 reversible reprogramming to epithelial cells with vitamin D treatment. Through time-course nucleosome-resolution histone mark ChIP-seq and RNA-seq profiling, we will computationally infer and experimentally validate the TRNs in these two systems.
描述(由申请人提供):对哺乳动物系统中生物过程的转录调节网络(TRN)的解密对于我们对正常生理和疾病病因的基本机制的理解至关重要。这是一项艰巨的任务,因为TRN中的链接太多是未知的。芯片芯片和CHIP-SEQ技术的出现使许多转录因子(TFS)的基因组结合位点的映射在生物学过程中已知是关键调节剂。但是,这两种技术仅限于已知的具有芯片质量抗体的调节剂。我们发现TF结合通常与动态组蛋白标记标记签名有关,并且可以从全基因组组蛋白标记动力学上进行计算预测。因此,我们假设,随着时间顺序的核小体分辨率芯片序列,具有一些信息性的组蛋白标记和基因表达的RNA-seq数据以及有效的计算建模,我们可以在哺乳动物生物学过程中推断出TRN。具体而言,我们建议开发有效的计算算法以实现AIM1:首先,预测核小体分辨率组蛋白标记动力学的TF结合;其次,从TF结合,组蛋白标记和基因表达谱中鉴定靶基因;第三,在时间课程中渗透TRN。我们还建议将上述算法应用于AIM 2的两个生物系统。一个是小鼠成肌细胞细胞系C2C12将骨,脂肪或肌肉分化为骨,脂肪或肌肉,而另一种是人类基本乳腺癌细胞系MDA-MB-453可逆性地对上皮细胞进行维生素D处理。通过时间表核小体分辨率组蛋白标记芯片序列和RNA-Seq分析,我们将在计算中推断和实验验证这两个系统中的TRN。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaole Shirley Liu其他文献
Gibbs sampling and bioinformatics
吉布斯采样和生物信息学
- DOI:
10.1002/047001153x.g409319 - 发表时间:
2005 - 期刊:
- 影响因子:3.7
- 作者:
Xiaole Shirley Liu - 通讯作者:
Xiaole Shirley Liu
Single-Cell RNA Sequencing Reveals the Interplay between Circulating CD4 <sup>+</sup> T Cells, B Cells and Cancer-Associated Monocytes in Classic Hodgkin Lymphoma Treated with PD-1 Blockade
- DOI:
10.1182/blood-2023-187038 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Julia Paczkowska;Ming Tang;Kyle T. Wright;Li Song;Kelsey Luu;Vignesh Shanmugam;Emma L. Welsh;Jason L. Weirather;Kathleen Pfaff;Robert A. Redd;Zumla Cader;Elisa Mandato;Jing Ouyang;Gali Bai;Lee N. Lawton;Philippe Armand;Scott Rodig;Xiaole Shirley Liu;Margaret A. Shipp - 通讯作者:
Margaret A. Shipp
Tropospheric ozone column retrieval from the Ozone Monitoring Instrument by means of a neural network algorithm
通过神经网络算法从臭氧监测仪器中反演对流层臭氧柱
- DOI:
10.5194/amtd-4-2491-2011 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
P. Sellitto;B. Bojkov;Xiaole Shirley Liu;K. Chance;F. Frate - 通讯作者:
F. Frate
br class=p1 /MethylPurify: tumor purity deconvolution and span style=line-height:1.5;differential methylation detection from single /spanspan style=line-height:1.5;tumor DNA methylomes
MmethylPurify:从单个肿瘤 DNA 甲基化组中进行肿瘤纯度解卷积和差异甲基化检测
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:12.3
- 作者:
Peng Jiang;Fuqiang Li;Yong Hou;Jianxing He;Jun Wang;Jun Wang;Peng Zhang;Yong Zhang;Xiaole Shirley Liu - 通讯作者:
Xiaole Shirley Liu
Ultrasensitive detection of TCR hypervariable region in solid-tissue RNA-seq data
固体组织 RNA-seq 数据中 TCR 高变区的超灵敏检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bo Li;Taiwen Li;Binbin Wang;Ruoxu Dou;J. Pignon;T. Choueiri;S. Signoretti;Jun S. Liu;Xiaole Shirley Liu - 通讯作者:
Xiaole Shirley Liu
Xiaole Shirley Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaole Shirley Liu', 18)}}的其他基金
Bioinformatics Technology to Characterize Tumor Infiltrating Immune Repertoires
生物信息学技术表征肿瘤浸润免疫库
- 批准号:
9507415 - 财政年份:2018
- 资助金额:
$ 32.93万 - 项目类别:
Computational Methods for Genome-Wide CRISPR Screens
全基因组 CRISPR 筛选的计算方法
- 批准号:
9128287 - 财政年份:2016
- 资助金额:
$ 32.93万 - 项目类别:
Computational Methods for Genome-Wide CRISPR Screens
全基因组 CRISPR 筛选的计算方法
- 批准号:
9350386 - 财政年份:2016
- 资助金额:
$ 32.93万 - 项目类别:
Bioinformatics, Biostatistics, and Image Analyses Core
生物信息学、生物统计学和图像分析核心
- 批准号:
10658868 - 财政年份:2013
- 资助金额:
$ 32.93万 - 项目类别:
Developing Informatics Technologies to Model Cancer Gene Regulation
开发信息学技术来模拟癌症基因调控
- 批准号:
8606997 - 财政年份:2013
- 资助金额:
$ 32.93万 - 项目类别:
Bioinformatics, Biostatistics, and Image Analyses Core
生物信息学、生物统计学和图像分析核心
- 批准号:
10443724 - 财政年份:2013
- 资助金额:
$ 32.93万 - 项目类别:
Bioinformatics, Biostatistics, and Image Analyses Core
生物信息学、生物统计学和图像分析核心
- 批准号:
10227097 - 财政年份:2013
- 资助金额:
$ 32.93万 - 项目类别:
Mechanism of Chromatin Organization and Dynamics in Development
染色质组织机制和发育动力学
- 批准号:
8229591 - 财政年份:2012
- 资助金额:
$ 32.93万 - 项目类别:
Mechanism of Chromatin Organization and Dynamics in Development
染色质组织机制和发育动力学
- 批准号:
8431756 - 财政年份:2012
- 资助金额:
$ 32.93万 - 项目类别:
Inferring Mammalian Transcriptional Regulatory Networks from Epigenomics
从表观基因组学推断哺乳动物转录调控网络
- 批准号:
8727613 - 财政年份:2011
- 资助金额:
$ 32.93万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分组密码算法后门的研究
- 批准号:62302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing and Automating an Extracellular Vesicle-Based Test for Early Detection of Hepatocellular Carcinoma
开发和自动化基于细胞外囊泡的测试以早期检测肝细胞癌
- 批准号:
10823687 - 财政年份:2023
- 资助金额:
$ 32.93万 - 项目类别:
Real-world effectiveness of HPV vaccine in women living with HIV and its impact on cervical cancer screening accuracies
HPV 疫苗对 HIV 感染女性的真实有效性及其对宫颈癌筛查准确性的影响
- 批准号:
10682184 - 财政年份:2023
- 资助金额:
$ 32.93万 - 项目类别:
Ribo-STAMPEDE: novel tools for molecular profiling of brain cell types
Ribo-STAMPEDE:脑细胞类型分子分析的新工具
- 批准号:
10506300 - 财政年份:2022
- 资助金额:
$ 32.93万 - 项目类别:
Using high dimensional molecular data to decipher gene dynamics underlying pathogenic synovial fibroblasts
利用高维分子数据破译致病性滑膜成纤维细胞的基因动力学
- 批准号:
10388258 - 财政年份:2021
- 资助金额:
$ 32.93万 - 项目类别: