Bioinformatics Technology to Characterize Tumor Infiltrating Immune Repertoires
生物信息学技术表征肿瘤浸润免疫库
基本信息
- 批准号:9507415
- 负责人:
- 金额:$ 44.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-06 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAntibodiesAntigensB cell repertoireB-LymphocytesBioinformaticsBiologicalCancer Immunology ScienceCancer VaccinesCell MaturationCell SeparationClinicCollaborationsCollectionComplementarity Determining RegionsComputational algorithmDataData SetDevelopmentEducation and OutreachGene ExpressionGenomic Data CommonsImmuneImmune systemImmunityImmunoglobulin Class SwitchingImmunoglobulin Somatic HypermutationImmunoglobulin Variable RegionImmunologistImmunotherapyInfiltrationInformaticsInformation TechnologyMainstreamingMalignant NeoplasmsMediatingMediationMethodsNational Cancer InstituteOncologistPatientsPropertyPublic DomainsRNA analysisReceptor CellReceptors, Antigen, B-CellResearch InfrastructureResourcesSamplingSolid NeoplasmSourceStatistical MethodsT cell therapyT-Cell ReceptorT-LymphocyteT-cell receptor repertoireTechnologyThe Cancer Genome AtlasTherapeuticTimeTissuesTumor ImmunityTumor TissueTumor stageTumor-Infiltrating LymphocytesV(D)J Recombinationanticancer researchbioinformatics resourcecancer cellcancer immunotherapycancer therapycancer typeclinical practicecohortcomputing resourcesdata miningdeep sequencinggenomic dataheuristicsimmunoglobulin receptorimmunological diversityimprovedimproved functioninginsightmRNA sequencingneoplasm resourcenovelonline resourceoutreachsimulationsoundtooltranscriptome sequencingtumortumor microenvironmentuser-friendlyweb interface
项目摘要
PROJECT SUMMARY
The repertoires of tumor-infiltrating T cells and B cells are rich sources of information about cancer-immune
interactions and provide insights on cancer immunotherapy targets. Efforts have been made to characterize B/T
cell repertoires in solid tumors using cell sorting followed by targeted deep sequencing. However, these
approaches may produce biased estimates during tissue disaggregation and can be expensive when applied to
large sample cohorts. Massively parallel mRNA sequencing (RNA-seq) technology has become the mainstream
method to profile gene expression and thousands of solid tumor RNA-seq profiles are available in the public
domain. The rich collection of tumor RNA-seq datasets provides an alternative approach to study tumor-infiltrating
B/T cell repertoires in solid tumors. Our team has recently developed a statistical method TIMER for deconvolving
different immune components in the tumor microenvironment, and TRUST for inferring the hypervariable
complementarity determining regions (CDRs) of the tumor infiltrating T cell receptor (TCR) repertoire from bulk
tumor RNA-seq data in the public domain.
Our preliminary analysis indicated that there are approximately ten times as many B cell receptor (BCR) reads
and TCR reads, suggesting that extracting the BCR repertoires from bulk tumor RNA-seq could reveal important
insights on B cell mediated tumor immunity. The aims of this proposal are: to extend our TRUST algorithm to
extract B cell receptor (BCR) repertoires from tumor RNA-seq data, and identify somatic hypermutations and
immunoglobin class switches (Aim 1); to systematically analyze TCR and BCR repertoires from large scale tumor
RNA-seq cohorts, and develop a user friendly web interface to allow cancer immunologists or immuno-oncologists
to investigate tumor-immune associations (Aim 2); to promote the utility of our tumor immune resource through
collaborations, cloud sharing, and outreach (Aim 3).
We will deliver a robust bioinformatics algorithm to systematically identify BCR / TCR repertoires from bulk tumor
RNA-seq data and a user-friendly resource for cancer immunologists or immuno-oncologists to explore tumor-
immune interactions from large tumor profiling cohorts in the public as well as their unpublished data. The
successful execution of this proposal has the potential to inform clinical practice of cancer immunotherapies,
including adoptive T cell transfer, therapeutic cancer vaccines or antibodies. Our proposed cancer immunology
algorithm and resource will be a unique addition to the array of bioinformatics tools developed by the Information
Technology for Cancer Research at the National Cancer Institute.
项目摘要
肿瘤浸润的T细胞和B细胞的曲目是有关癌症免疫信息的丰富来源
相互作用并提供有关癌症免疫疗法靶标的见解。已经努力表征b/t
使用细胞分选,然后进行靶向深测序,在实体瘤中的细胞谱。但是,这些
方法可能会在组织分解过程中产生偏见的估计,并且应用于
大型样品队列。大量平行的mRNA测序(RNA-SEQ)技术已成为主流
公众提供了谱图基因表达和成千上万的实体瘤RNA-seq轮廓的方法
领域。丰富的肿瘤RNA-seq数据集的收集提供了一种研究肿瘤浸润的替代方法
实体瘤中的B/T细胞库。我们的团队最近开发了一个统计方法计时器,以进行反应
肿瘤微环境中不同的免疫成分,并信任推断高变量
从肿瘤浸润T细胞受体(TCR)库的互补性确定区域(CDR)
公共领域中的肿瘤RNA-seq数据。
我们的初步分析表明,大约有许多B细胞受体(BCR)读取的十倍
TCR读取,这表明从散装肿瘤RNA-Seq中提取BCR曲目可能会揭示重要的
对B细胞介导的肿瘤免疫的见解。该提案的目的是:将我们的信任算法扩展到
从肿瘤RNA-seq数据中提取B细胞受体(BCR)曲目,并鉴定体内过度过度和
免疫球蛋白类开关(AIM 1);系统地分析大规模肿瘤的TCR和BCR曲目
RNA-seq队列,并开发一个用户友好的网络界面,以允许癌症免疫学家或免疫肿瘤学家
研究肿瘤免疫相关(AIM 2);通过
合作,云共享和外展(AIM 3)。
我们将提供强大的生物信息学算法,以系统地识别大量肿瘤的BCR / TCR库
RNA-seq数据和癌症免疫学家或免疫肿瘤学家的用户友好资源探索肿瘤 -
大型肿瘤分析队列中的免疫相互作用及其未发表的数据。这
该提案的成功执行有可能为癌症免疫疗法的临床实践提供信息,
包括收养T细胞转移,治疗性癌症疫苗或抗体。我们提出的癌症免疫学
算法和资源将是通过信息开发的一系列生物信息学工具的独特补充
国家癌症研究所的癌症研究技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaole Shirley Liu其他文献
Gibbs sampling and bioinformatics
吉布斯采样和生物信息学
- DOI:
10.1002/047001153x.g409319 - 发表时间:
2005 - 期刊:
- 影响因子:3.7
- 作者:
Xiaole Shirley Liu - 通讯作者:
Xiaole Shirley Liu
Single-Cell RNA Sequencing Reveals the Interplay between Circulating CD4 <sup>+</sup> T Cells, B Cells and Cancer-Associated Monocytes in Classic Hodgkin Lymphoma Treated with PD-1 Blockade
- DOI:
10.1182/blood-2023-187038 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Julia Paczkowska;Ming Tang;Kyle T. Wright;Li Song;Kelsey Luu;Vignesh Shanmugam;Emma L. Welsh;Jason L. Weirather;Kathleen Pfaff;Robert A. Redd;Zumla Cader;Elisa Mandato;Jing Ouyang;Gali Bai;Lee N. Lawton;Philippe Armand;Scott Rodig;Xiaole Shirley Liu;Margaret A. Shipp - 通讯作者:
Margaret A. Shipp
Tropospheric ozone column retrieval from the Ozone Monitoring Instrument by means of a neural network algorithm
通过神经网络算法从臭氧监测仪器中反演对流层臭氧柱
- DOI:
10.5194/amtd-4-2491-2011 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
P. Sellitto;B. Bojkov;Xiaole Shirley Liu;K. Chance;F. Frate - 通讯作者:
F. Frate
br class=p1 /MethylPurify: tumor purity deconvolution and span style=line-height:1.5;differential methylation detection from single /spanspan style=line-height:1.5;tumor DNA methylomes
MmethylPurify:从单个肿瘤 DNA 甲基化组中进行肿瘤纯度解卷积和差异甲基化检测
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:12.3
- 作者:
Peng Jiang;Fuqiang Li;Yong Hou;Jianxing He;Jun Wang;Jun Wang;Peng Zhang;Yong Zhang;Xiaole Shirley Liu - 通讯作者:
Xiaole Shirley Liu
Ultrasensitive detection of TCR hypervariable region in solid-tissue RNA-seq data
固体组织 RNA-seq 数据中 TCR 高变区的超灵敏检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bo Li;Taiwen Li;Binbin Wang;Ruoxu Dou;J. Pignon;T. Choueiri;S. Signoretti;Jun S. Liu;Xiaole Shirley Liu - 通讯作者:
Xiaole Shirley Liu
Xiaole Shirley Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaole Shirley Liu', 18)}}的其他基金
Computational Methods for Genome-Wide CRISPR Screens
全基因组 CRISPR 筛选的计算方法
- 批准号:
9128287 - 财政年份:2016
- 资助金额:
$ 44.3万 - 项目类别:
Computational Methods for Genome-Wide CRISPR Screens
全基因组 CRISPR 筛选的计算方法
- 批准号:
9350386 - 财政年份:2016
- 资助金额:
$ 44.3万 - 项目类别:
Bioinformatics, Biostatistics, and Image Analyses Core
生物信息学、生物统计学和图像分析核心
- 批准号:
10658868 - 财政年份:2013
- 资助金额:
$ 44.3万 - 项目类别:
Developing Informatics Technologies to Model Cancer Gene Regulation
开发信息学技术来模拟癌症基因调控
- 批准号:
8606997 - 财政年份:2013
- 资助金额:
$ 44.3万 - 项目类别:
Bioinformatics, Biostatistics, and Image Analyses Core
生物信息学、生物统计学和图像分析核心
- 批准号:
10443724 - 财政年份:2013
- 资助金额:
$ 44.3万 - 项目类别:
Bioinformatics, Biostatistics, and Image Analyses Core
生物信息学、生物统计学和图像分析核心
- 批准号:
10227097 - 财政年份:2013
- 资助金额:
$ 44.3万 - 项目类别:
Mechanism of Chromatin Organization and Dynamics in Development
染色质组织机制和发育动力学
- 批准号:
8229591 - 财政年份:2012
- 资助金额:
$ 44.3万 - 项目类别:
Mechanism of Chromatin Organization and Dynamics in Development
染色质组织机制和发育动力学
- 批准号:
8431756 - 财政年份:2012
- 资助金额:
$ 44.3万 - 项目类别:
Inferring Mammalian Transcriptional Regulatory Networks from Epigenomics
从表观基因组学推断哺乳动物转录调控网络
- 批准号:
8536867 - 财政年份:2011
- 资助金额:
$ 44.3万 - 项目类别:
Inferring Mammalian Transcriptional Regulatory Networks from Epigenomics
从表观基因组学推断哺乳动物转录调控网络
- 批准号:
8727613 - 财政年份:2011
- 资助金额:
$ 44.3万 - 项目类别:
相似国自然基金
抗变构/单体形式的C反应蛋白关键抗原表位199-206抗体在狼疮性肾炎小管间质病变中的作用机制及其靶向治疗研究
- 批准号:82300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原位疫苗新策略:抗体偶联仿生ROS纳米酶增强巨噬细胞吞噬及抗原交叉呈递效应
- 批准号:32371454
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于抗原抗体相互作用的抗体定向虚拟设计与筛选
- 批准号:32370697
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
单个抗体IgG在图案化抗原阵列上运动的可视化研究
- 批准号:32301180
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
CD40-CD154共刺激信号介导的TD/TI抗原诱导罗非鱼抗体分泌细胞形成机制的比较研究
- 批准号:32303044
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 44.3万 - 项目类别:
Project 2: Mechanisms of Resistance to Neoantigen Vaccines in PDAC
项目2:PDAC新抗原疫苗耐药机制
- 批准号:
10708575 - 财政年份:2023
- 资助金额:
$ 44.3万 - 项目类别:
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
- 批准号:
10673223 - 财政年份:2023
- 资助金额:
$ 44.3万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 44.3万 - 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 44.3万 - 项目类别: