Revealing Cardiovascular Stress Regulation beyond the Diffraction Limit
揭示超越衍射极限的心血管压力调节
基本信息
- 批准号:8065410
- 负责人:
- 金额:$ 100.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimalsAortaAreaArtsBiochemicalBiological SciencesBiomedical EngineeringBiomedical ResearchBiomedical TechnologyBlood VesselsCardiac MyocytesCardiovascular DiseasesCardiovascular PhysiologyCardiovascular systemCause of DeathCell physiologyCellsCellular StructuresCommunitiesComplementComplexCouplingDNA Sequence RearrangementDefectDiseaseDoctor of PhilosophyEngineeringEstrogensEventFluorescenceFluorescence MicroscopyFluorescence Resonance Energy TransferFunctional disorderG-Protein-Coupled ReceptorsGene ProteinsGenesGenomicsGoalsGuidelinesHeadHealthHeartHeart failureHumanImageImageryIntellectual PropertyInternetLaboratoriesLaboratory ResearchLateralLegLifeLocationMAPK14 geneMacromolecular ComplexesMapsMeasurementMeasuresMicroscopeMicroscopicMicroscopyModelingMolecularMolecular MedicineMuscleMyocardiumPathway interactionsPhosphotransferasesPhysiologyPropertyProtein DynamicsProteinsProteomicsPublic HealthPublicationsRNARecyclingRegulationReportingResearchResearch PersonnelResolutionSignal TransductionStimulusStressStructureSynapsesSystemTechnologyTimeUnited StatesWidtharmbasecommercializationdesignfluorescence imagingfluorophoregenetic manipulationimprovedinstrumentinterestmulticatalytic endopeptidase complexnanoimagingnanoscalenew therapeutic targetnovelpressureprogramsprotein complexprotein protein interactionprototyperesponsespatiotemporalsrc-Family Kinasestheoriesuser-friendly
项目摘要
DESCRIPTION (provided by the applicant): To better understand cell function in health and disease, we need to visualize the localization of protein complexes and dynamic changes in different cellular compartments in response to normal stimuli or insult. To this end, we will develop "Nanomicroscopes" for fluorescence imaging to measure structures and their dynamics inside a cell with a 3D spatial resolution down to the scale of 20-40 nm while maintaining the microscopic whole cell scale over a 20-100 um range. In a multi-disciplinary engineering and biological sciences effort, we will develop and apply such "Nanomicroscopes" to cardiovascular research, specifically to a pressure-overload model of heart failure. The overall hypothesis states that, stress-induced structural rearrangements -in the subcellular location and interactions- of key signaling protein complexes in the heart and blood vessels differentially contribute to the onset and progression of heart failure. We show exciting preliminary advances in the design of a novel Reflexion Nanomicroscope that achieves a full-width-half- maximum (FWHM) of ~100 nm lateral resolution. The Specific Aims are: Aim 1. TO DEVELOP NOVEL NANOMICROSCOPIES TO MEASURE STATIC AND DYNAMIC PROTEIN-PROTEIN INTERACTIONS. 1.1. To further improve the novel Reflexion Confocal Nanomicroscope by constructing a fast acquisition multicolor Reflexion Confocal with FRET for living cells and develop the theory to enhance its resolution beyond. 1.2. To combine STED with 4Pi microscopy to achieve 10-20 nm 3D resolution and expand to two fluorescene wavelengths for protein colocalization imaging. Aim 2. TO APPLY THE NOVEL NANOMICROSCOPES TO VISUALIZE STATIC AND DYNAMIC CHANGES OF MACROMOLECULAR COMPLEXES REGULATING HEART AND VASCULAR SIGNALING IN A PRESSURE OVERLOAD MODEL OF HEART FAILURE BY DETERMINING: 2.1. The structural basis of local stress signaling (p38 kinase signalsome) and EC-coupling defects in cardiomyocytes under stress and heart failure. 2.2. The spatiotemporal remodeling of proteasome subunits and their assembly in normal, stressed and protected (e.g. estrogen signals) myocardium. 2.3. The stress-induced dynamics/remodeling of aortic GPCR-Src tyrosine kinase signaling complexes that exacerbate heart failure. Nano-imaging will be complemented by state-of-the-art molecular manipulations, biochemical and proteomic approaches. These studies will be the basis to unravel -at the nanoscale level- the structural map of protein complexes at the subcellular level, their localization and dynamic interactions in cardiovascular disease. Identifying the structural basis of cell signaling pathways/networks will provide opportunities to discover new therapeutic targets to alleviate cardiovascular disease, a leading cause of death in the United States.
描述(由申请人提供):为了更好地了解健康和疾病中的细胞功能,我们需要可视化蛋白质复合物的定位以及不同细胞区室响应正常刺激或损伤的动态变化。为此,我们将开发用于荧光成像的“纳米显微镜”,以 3D 空间分辨率低至 20-40 nm 的尺度测量细胞内的结构及其动态,同时保持微观全细胞尺度在 20-100 um 范围内。在多学科工程和生物科学的努力中,我们将开发这种“纳米显微镜”并将其应用于心血管研究,特别是心力衰竭的压力过载模型。总体假设表明,压力诱导的心脏和血管中关键信号蛋白复合物的亚细胞位置和相互作用的结构重排对心力衰竭的发生和进展有不同的影响。我们展示了新型反射纳米显微镜设计中令人兴奋的初步进展,该显微镜实现了约 100 nm 横向分辨率的半高全宽 (FWHM)。具体目标是: 目标 1. 开发新型纳米显微镜来测量静态和动态蛋白质-蛋白质相互作用。 1.1.通过构建具有 FRET 的活细胞快速采集多色反射共焦纳米显微镜,进一步改进新型反射共焦纳米显微镜,并发展理论以提高其分辨率。 1.2.将 STED 与 4Pi 显微镜相结合,实现 10-20 nm 3D 分辨率,并扩展到两个荧光波长以进行蛋白质共定位成像。目标 2. 通过确定以下内容,应用新型纳米显微镜来可视化在心力衰竭压力超负荷模型中调节心脏和血管信号转导的大分子复合物的静态和动态变化: 2.1。应激和心力衰竭下心肌细胞局部应激信号传导(p38 激酶信号传导)和 EC 偶联缺陷的结构基础。 2.2.蛋白酶体亚基的时空重塑及其在正常、应激和受保护(例如雌激素信号)心肌中的组装。 2.3.应激诱导的主动脉 GPCR-Src 酪氨酸激酶信号复合物的动力学/重塑会加剧心力衰竭。纳米成像将得到最先进的分子操作、生化和蛋白质组学方法的补充。这些研究将成为在纳米级水平上揭示亚细胞水平上蛋白质复合物的结构图、它们在心血管疾病中的定位和动态相互作用的基础。确定细胞信号通路/网络的结构基础将为发现新的治疗靶点以减轻心血管疾病提供机会,心血管疾病是美国的主要死亡原因。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying spatial correlations of fluorescent markers using enhanced background reduction with protein proximity index and correlation coefficient estimations.
使用蛋白质邻近指数和相关系数估计增强背景减少来量化荧光标记的空间相关性。
- DOI:
- 发表时间:2011-10
- 期刊:
- 影响因子:14.8
- 作者:Zinchuk, Vadim;Wu, Yong;Grossenbacher;Stefani, Enrico
- 通讯作者:Stefani, Enrico
MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain.
MaxiK 通道相互作用组揭示了其与哺乳动物大脑中 GABA 转运蛋白 3 和热休克蛋白 60 的相互作用。
- DOI:
- 发表时间:2016-03-11
- 期刊:
- 影响因子:3.3
- 作者:Singh, H;Li, M;Hall, L;Chen, S;Sukur, S;Lu, R;Caputo, A;Meredith, A L;Stefani, E;Toro, L
- 通讯作者:Toro, L
MitoBK(Ca) is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location.
MitoBK(Ca) 由 Kcnma1 基因编码,剪接序列定义其线粒体位置。
- DOI:
- 发表时间:2013-06-25
- 期刊:
- 影响因子:11.1
- 作者:Singh, Harpreet;Lu, Rong;Bopassa, Jean C;Meredith, Andrea L;Stefani, Enrico;Toro, Ligia
- 通讯作者:Toro, Ligia
Ultrafast photon counting applied to resonant scanning STED microscopy.
超快光子计数应用于共振扫描 STED 显微镜。
- DOI:
- 发表时间:2015-01
- 期刊:
- 影响因子:2
- 作者:Wu, Xundong;Toro, Ligia;Stefani, Enrico;Wu, Yong
- 通讯作者:Wu, Yong
Improved sub-µs gating analysis indicates conformational changes as caused by ion/pore interactions in the MaxiK channel
改进的亚 µs 门控分析表明 MaxiK 通道中离子/孔相互作用引起的构象变化
- DOI:
- 发表时间:2008-02-04
- 期刊:
- 影响因子:0
- 作者:I. Schröder
- 通讯作者:I. Schröder
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ENRICO STEFANI其他文献
ENRICO STEFANI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ENRICO STEFANI', 18)}}的其他基金
Novel interactions of Slo1 channel and Thromboxane A2 receptor in blood vessels
血管中 Slo1 通道和血栓素 A2 受体的新相互作用
- 批准号:
7695542 - 财政年份:2009
- 资助金额:
$ 100.55万 - 项目类别:
Novel interactions of Slo1 channel and Thromboxane A2 receptor in blood vessels
血管中 Slo1 通道和血栓素 A2 受体的新相互作用
- 批准号:
7851419 - 财政年份:2009
- 资助金额:
$ 100.55万 - 项目类别:
Revealing Cardiovascular Stress Regulation beyond the Diffraction Limit
揭示超越衍射极限的心血管压力调节
- 批准号:
7788195 - 财政年份:2007
- 资助金额:
$ 100.55万 - 项目类别:
Revealing Cardiovascular Stress Regulation beyond the Diffraction Limit
揭示超越衍射极限的心血管压力调节
- 批准号:
7251721 - 财政年份:2007
- 资助金额:
$ 100.55万 - 项目类别:
Revealing Cardiovascular Stress Regulation beyond the Diffraction Limit
揭示超越衍射极限的心血管压力调节
- 批准号:
7586132 - 财政年份:2007
- 资助金额:
$ 100.55万 - 项目类别:
Revealing Cardiovascular Stress Regulation beyond the Diffraction Limit
揭示超越衍射极限的心血管压力调节
- 批准号:
7410118 - 财政年份:2007
- 资助金额:
$ 100.55万 - 项目类别:
相似国自然基金
城市化对土壤动物宿主-寄生虫关系的影响机制研究
- 批准号:32301430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三江源国家公园黄河源园区食草野生动物与放牧家畜冲突的强度、影响及未来情景
- 批准号:42371283
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
十年禁渔对赤水河底栖动物群落多样性及其维持机制的影响
- 批准号:32301370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两栖动物(蛙类)对新型卤代有机污染物的生物富集及其对污染物环境迁移影响的研究
- 批准号:42307349
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
土壤动物对草地生态系统地下食物网碳氮传输过程及土壤有机质形成的影响
- 批准号:32301359
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 100.55万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 100.55万 - 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 100.55万 - 项目类别:
Non-invasive Biomarkers of Symptom Severity and Treatment Response in Pediatric Feeding Disorders
儿科喂养障碍症状严重程度和治疗反应的非侵入性生物标志物
- 批准号:
10723599 - 财政年份:2023
- 资助金额:
$ 100.55万 - 项目类别:
Bionanomatrix coating to enhance antibacterial effects while reducing inflammation of knee joint implants
生物纳米基质涂层可增强抗菌效果,同时减少膝关节植入物的炎症
- 批准号:
10822220 - 财政年份:2023
- 资助金额:
$ 100.55万 - 项目类别: