Model-Based fMRI of Dynamic Category Learning: The Memory and Attention Interface
基于模型的动态类别学习功能磁共振成像:记忆和注意力接口
基本信息
- 批准号:8259406
- 负责人:
- 金额:$ 15.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-21 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectAgaricalesAlzheimer&aposs DiseaseAttentionAttention deficit hyperactivity disorderBase of the BrainBehaviorBehavioralBrainCategoriesClassificationCognitionCognitiveComplexConflict (Psychology)DataDecision MakingDevelopmentDiagnosisDimensionsDiseaseEpilepsyEyeFriendsFunctional Magnetic Resonance ImagingFutureGoalsHeartHumanImage AnalysisImpairmentIndividualKnowledgeLeadLearningLinkMajor Depressive DisorderMeasuresMedialMemoryMethodsModelingNatureNeurobiologyOutcomeParticipantPatternPerformancePersonsPlayPrefrontal CortexProcessPsyche structureRecruitment ActivityResearchResourcesRoleSamplingSchizophreniaSourceSpecific qualifier valueStimulusStructureSystemTemporal LobeTimeTo specifyUpdateUrsidae FamilyVariantVentral StriatumWeightWorkbasecostdirected attentionexecutive functionexperienceimprovedinformation gatheringinsightmental statenervous system disorderneuromechanismnovelnovel strategiespublic health relevancerelating to nervous systemreward processingselective attentionsoundtheories
项目摘要
DESCRIPTION (provided by applicant): Judging a person as a friend or foe, a mushroom as edible or poisonous, or a sound as an \l\ or \r\ are examples of categorization problems. One key aspect of learning is discerning the relevant stimulus dimensions that determine category membership and the value and costs (in terms of time, cognitive efort, and dollars) associated with gathering such information. Many category learning models employ selective attention mechanisms that learn which stimulus dimensions are most critical to performance. However, these models make the unrealistic assumption that all stimulus dimensions will be encoded, and, thus, fail to address challenges that arise from limited processing resources, both cognitive and neural. Improved models are required to understand the interplay between attentional allocation and memory. By recasting category learning as a dynamic decision process, we develop a model that selectively encodes information during learning as a function of the learner's goals, task demands, and knowledge state. To capture the required interplay between attention, memory, and executive function, our model consists of two primary components: one that determines the value of potential sources of information based on the decision maker's goals and assumptions about the world and a second component that reflects the decision maker's current knowledge. Current knowledge represented by the second learning component is utilized by the first value component to direct information gathering. The learning component of the model is updated by the information selected by the first component, completing the cycle of mutual influence. A central goal of the proposal is to develop models that make realistic assumptions about human capacity limitations and to characterize how individuals' mental machinery and behavioral outcomes deviate from rational principles. A second goal is to combine our novel model-based approach with eye tracking and functional magnetic resonance imaging (fMRI) to determine the neural mechanisms that support goal-directed attention and learning. Model-based analyses of fMRI data have the power to go beyond conventional analysis methods to reveal complex dynamics between neural systems that give rise to cognitive competencies. In two proposed studies, participants must decide which information sources to sample, taking into account the conflicting needs of (1) minimizing information cost, (2) making the correct decision, and (3) learning more about the categories and information sources with the aim of increasing performance on future trials. By fitting our model to individuals' information seeking and classification behavior, we can calculate a number of regressors that track unobservable mental states that are predictive of subsequent behavior and critical for determining the brain basis of the dynamic decision making processes that support category learning. Advancing our knowledge of the brain processes that underlie these powerful aspects of cognition may have real-world consequences by providing knowledge about optimal learning strategies as well as providing insight into disorders that affect learning and memory.
PUBLIC HEALTH RELEVANCE: Impairments in learning, memory, and attention deficits accompany a number of psychiatric (e.g., schizophrenia, major depression, ADHD) and neurological disorders (e.g., Alzheimer's disease, epilepsy). Accordingly, understanding the neural mechanisms of attention and memory in the healthy brain promises to advance neurobiological theory and may lead to new developments that bear on the diagnosis and treatment of such conditions.
描述(由申请人提供):将一个人判断为朋友或敌人,蘑菇可食用或有毒,或者是\ l \或\ r \的声音是分类问题的示例。学习的一个关键方面是辨别相关的刺激维度,这些刺激维度决定了类别成员资格以及与收集此类信息相关的价值和成本(在时间,认知能力和美元方面)。许多类别学习模型采用选择性的注意机制,这些机制学习哪些刺激维度对性能至关重要。但是,这些模型做出了不切实际的假设,即所有刺激维度都将被编码,因此无法解决认知和神经的有限处理资源引起的挑战。需要改进的模型来了解注意力分配和记忆之间的相互作用。通过将类别学习作为动态决策过程,我们开发了一个模型,该模型在学习过程中选择性地编码信息,从而取决于学习者的目标,任务需求和知识状态。为了捕获注意力,记忆和执行功能之间所需的相互作用,我们的模型由两个主要组成部分组成:一个基于决策者对世界的目标和假设,确定潜在信息来源的价值,以及反映决策者当前知识的第二个组成部分。第一个值组件使用第二个学习组件代表的当前知识来指导信息收集。模型的学习组件由第一个组件选择的信息更新,从而完成了相互影响的周期。该提案的一个核心目标是开发对人类能力限制做出现实假设的模型,并表征个人的心理机制和行为结果如何偏离理性原则。第二个目标是将基于新型模型的方法与眼睛跟踪和功能磁共振成像(fMRI)相结合,以确定支持目标指导注意力和学习的神经机制。基于模型的fMRI数据分析有能力超越常规分析方法,以揭示引起认知能力的神经系统之间的复杂动态。在两项拟议的研究中,参与者必须考虑到(1)最小化信息成本的需求,(2)做出正确的决定,以及(3)对类别和信息来源的更多信息,以提高对未来试验的绩效,以最大程度地减少信息成本,(2)最小化信息成本。通过将我们的模型拟合到个人的信息寻求和分类行为中,我们可以计算许多回归器,这些回归变量跟踪无法观察的精神状态,这些状态可预测随后的行为,并且对于确定支持类别学习的动态决策过程的大脑基础至关重要。通过提供有关最佳学习策略的知识以及对影响学习和记忆的疾病的洞察力,可以促进我们对认知这些强大方面的大脑过程的了解,可能会带来现实世界中的后果。
公共卫生相关性:许多精神病学(例如精神分裂症,严重抑郁症,ADHD)和神经系统疾病(例如,阿尔茨海默氏病,癫痫病)伴随着学习,记忆和注意力缺陷的障碍。因此,了解健康大脑中注意力和记忆的神经机制有望推进神经生物学理论,并可能导致对这种疾病的诊断和治疗的新发展。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decoding the brain's algorithm for categorization from its neural implementation.
- DOI:10.1016/j.cub.2013.08.035
- 发表时间:2013-10-21
- 期刊:
- 影响因子:9.2
- 作者:Mack, Michael L.;Preston, Alison R.;Love, Bradley C.
- 通讯作者:Love, Bradley C.
The nature of belief-directed exploratory choice in human decision-making.
- DOI:10.3389/fpsyg.2011.00398
- 发表时间:2011
- 期刊:
- 影响因子:3.8
- 作者:Knox WB;Otto AR;Stone P;Love BC
- 通讯作者:Love BC
Real-time strategy game training: emergence of a cognitive flexibility trait.
- DOI:10.1371/journal.pone.0070350
- 发表时间:2013
- 期刊:
- 影响因子:3.7
- 作者:Glass BD;Maddox WT;Love BC
- 通讯作者:Love BC
Striatal and hippocampal entropy and recognition signals in category learning: simultaneous processes revealed by model-based fMRI.
- DOI:10.1037/a0027865
- 发表时间:2012-07
- 期刊:
- 影响因子:2.6
- 作者:Davis, Tyler;Love, Bradley C.;Preston, Alison R.
- 通讯作者:Preston, Alison R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRADLEY C LOVE其他文献
BRADLEY C LOVE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRADLEY C LOVE', 18)}}的其他基金
Model-Based fMRI of Dynamic Category Learning: The Memory and Attention Interface
基于模型的动态类别学习功能磁共振成像:记忆和注意力接口
- 批准号:
8114540 - 财政年份:2011
- 资助金额:
$ 15.32万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 15.32万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 15.32万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 15.32万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 15.32万 - 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
- 批准号:
10585508 - 财政年份:2023
- 资助金额:
$ 15.32万 - 项目类别: