Modular Self-Assembled Coatings for Biomaterials
用于生物材料的模块化自组装涂层
基本信息
- 批准号:8256536
- 负责人:
- 金额:$ 32.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-09-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAnimal ModelAppointmentArchitectureAttentionBasement membraneBindingBiocompatible MaterialsBiologicalBloodBlood Vessel ProsthesisCell Culture TechniquesCellsCollagenComplexCorneaCuesDataDermalDevelopmentDevicesDrug FormulationsElementsEndothelial CellsEndotheliumEngineeringEpithelial CellsEpitheliumExtracellular MatrixFutureGoalsHealedHealthHydrogelsImmune responseImmune systemImmunologistImplantIn VitroIndividualInstitutionInvestigationLaboratoriesLeadLengthLigandsLigationLiteratureMechanicsNatural regenerationOrganOutcomes ResearchPatternPeptidesPerformanceProcessPropertyProsthesisProteinsPublic HealthResearchResearch PersonnelRouteSeriesSignal TransductionSiteSkin SubstitutesSpatial DistributionSpecific qualifier valueStimulusSurfaceSurgeonSystemTertiary Protein StructureTherapeuticTimeTissue EngineeringTissuesTranslationsVascular GraftWorkbasebehavior influencecell behaviorcell growthchemical propertyclinical applicationdesignhealingimmunogenicimmunogenicityimmunoreactivityimplant coatingimplant materialimplantable deviceimprovedin vivoinnovationmimicrynanometernanoscalenanostructuredprotein aminoacid sequencereceptorregenerativeresearch studyscaffoldself assemblysuccessurologicviscoelasticity
项目摘要
DESCRIPTION (provided by applicant): Many implanted biomaterials, including vascular grafts, corneal prostheses, urological prostheses, and cultured skin substitutes, function at tissue interfaces that would normally be lined with epithelia or endothelia. However, in most cases these devices do not adequately support the formation of epithelia or endothelia on their surfaces, making them prone to a host of complications including thrombogenesis, immunoreactivity, disregulation of cell growth around them, or poor barrier function. The long-term goal of this research is to develop coatings for implanted biomaterials capable of supporting the formation of functional epithelia and endothelia by mimicking the construction of their native substrates, basement membranes (BMs). BMs are exquisitely tailored protein architectures, and many signaling domains, peptide sequences, mechanical factors, and spatial patterns of ligands have been identified in them that influence the behavior of the epithelia and endothelia they support. However, integrating and tuning this complexity of multiple factors reliably in synthetic biomaterials coatings is currently challenging. The objective of this research is to design biomaterials coatings based on modular peptide co-assembly allowing the incorporation, adjustment, and optimization of many of these factors so as to elicit rapid and functional epithelialization or endothelialization. In addition, steps will be taken to avoid any potentially immunogenic combinations of peptides. The work is divided into four aims: Aim 1) Design a modular system of self-assembling peptides and protein domains where ligand identity, ligand clustering, and viscoelasticity can be independently and precisely adjusted; Aim 2) Identify any peptides or combinations of peptides that significantly raise the immunogenicity of the synthetic BMs; Aim 3) Using factorial experimentation, identify combinations of ligands, viscoelastic moduli, and spatial arrangements of ligands that lead to functional epithelialization and endothelialization; Aim 4) Apply synthetic BMs to existing biomaterials and re-evaluate epithelialization and endothelialization in vitro. This work will be accomplished by a collaborative team of engineers, immunologists, cell biologists, biophysicists, and surgeons by designing and investigating a series of peptides and protein domains capable of co-assembling into precisely defined hydrogels with independent control over ligand identity, ligand clustering on the nanoscale and micron-scale, and matrix viscoelasticity. Experimentally optimized coatings will be applied to commonly used ePTFE and collagen implant materials. The outcomes of this research will include coated prostheses that can be evaluated in large animal models in future investigations, as well as a self-assembling set of peptides that may additionally be useful for a variety of other biomedical applications, including 3-D cell culture or controlled therapeutic release. PUBLIC HEALTH RELEVANCE: This research will positively affect public health by introducing optimally tuned biomaterials coatings capable of supporting the rapid regeneration of epithelia and endothelia on synthetic surfaces, which in turn will result in the enhanced performance of implanted devices such as vascular prostheses, corneal implants, cultured skin substitutes, and other tissue engineered constructs.
描述(由申请人提供):许多植入的生物材料,包括血管移植物,角膜假体,泌尿科假体和培养的皮肤替代品,在组织界面的功能通常衬有上皮或内皮层。但是,在大多数情况下,这些设备不能充分支持表面上上皮或内皮的形成,使它们容易出现许多并发症,包括血栓形成,免疫反应性,疏离周围的细胞生长或障碍功能不佳。这项研究的长期目标是开发植入的生物材料涂料,能够通过模仿其天然基质基质基底膜(BMS)来支持功能性上皮和内皮的形成。 BMS是精美定制的蛋白质体系结构,并且已经鉴定出了许多信号传导域,肽序列,机械因子和配体的空间模式,它们在其中影响了它们支持的上皮和内皮的行为。但是,在合成生物材料涂料中可靠地整合和调整多种因素的复杂性目前具有挑战性。这项研究的目的是设计基于模块化肽共组装的生物材料涂料,从而允许对许多因素进行整合,调整和优化,从而引起快速和功能性上皮化或内皮化。此外,将采取步骤避免肽的任何潜在免疫原性组合。该作品分为四个目标:目标1)设计一个自组装肽和蛋白质结构域的模块化系统,其中配体身份,配体聚类和粘弹性可以独立和精确调整;目标2)确定明显提高合成BMS免疫原性的肽的任何肽或组合;目标3)使用阶乘实验,确定配体的组合,粘弹性模量以及导致功能性上皮化和内皮化的配体的空间排列;目标4)将合成BMS应用于现有的生物材料,并在体外重新评估上皮化和内皮化。 This work will be accomplished by a collaborative team of engineers, immunologists, cell biologists, biophysicists, and surgeons by designing and investigating a series of peptides and protein domains capable of co-assembling into precisely defined hydrogels with independent control over ligand identity, ligand clustering on the nanoscale and micron-scale, and matrix viscoelasticity.实验优化的涂料将应用于常用的EPTFE和胶原蛋白植入物材料。这项研究的结果将包括涂层的假体,这些假体可以在未来的研究中在大型动物模型中进行评估,以及一组自组装的肽,这些肽可能对其他各种其他生物医学应用也有用,包括3-D细胞培养或受控治疗性治疗。 PUBLIC HEALTH RELEVANCE: This research will positively affect public health by introducing optimally tuned biomaterials coatings capable of supporting the rapid regeneration of epithelia and endothelia on synthetic surfaces, which in turn will result in the enhanced performance of implanted devices such as vascular prostheses, corneal implants, cultured skin substitutes, and other tissue engineered constructs.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel H Collier其他文献
Joel H Collier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel H Collier', 18)}}的其他基金
Supramolecular biomaterials for tuning the inflammatory properties of the complement system
用于调节补体系统炎症特性的超分子生物材料
- 批准号:
10538835 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Supramolecular biomaterials for tuning the inflammatory properties of the complement system
用于调节补体系统炎症特性的超分子生物材料
- 批准号:
10631187 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Engineered immunotherapies neutralizing interleukin-22 binding protein
中和白细胞介素 22 结合蛋白的工程免疫疗法
- 批准号:
10538770 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Engineered immunotherapies neutralizing interleukin-22 binding protein
中和白细胞介素 22 结合蛋白的工程免疫疗法
- 批准号:
10688059 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Sublingual Supramolecular Vaccines and Immunotherapies
舌下超分子疫苗和免疫疗法
- 批准号:
10671694 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Supramolecular peptide immunotherapies for peanut allergy
花生过敏的超分子肽免疫疗法
- 批准号:
10416075 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Supramolecular peptide immunotherapies for peanut allergy
花生过敏的超分子肽免疫疗法
- 批准号:
10317230 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Sublingual Supramolecular Vaccines and Immunotherapies
舌下超分子疫苗和免疫疗法
- 批准号:
10390493 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Engineering Adaptive Immune Responses from Hydrogel Scaffolds to Promote Tissue Regeneration
利用水凝胶支架设计适应性免疫反应以促进组织再生
- 批准号:
10571804 - 财政年份:2020
- 资助金额:
$ 32.94万 - 项目类别:
Engineering Adaptive Immune Responses from Hydrogel Scaffolds to Promote Tissue Regeneration
利用水凝胶支架设计适应性免疫反应以促进组织再生
- 批准号:
10343752 - 财政年份:2020
- 资助金额:
$ 32.94万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 32.94万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 32.94万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 32.94万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 32.94万 - 项目类别: