Image-Based Numerical Predictions of Hemodynamics following Vascular Intervention
血管介入后基于图像的血流动力学数值预测
基本信息
- 批准号:8458176
- 负责人:
- 金额:$ 37.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-03 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAffectAnatomyAneurysmAngiographyArteriesArteriovenous fistulaBiomechanicsBiomedical ResearchBlood CirculationBlood VesselsCerebral AneurysmClinical ResearchClipCollaborationsComputational TechniqueComputer SimulationComputing MethodologiesDescriptorDevelopmentDistalEvaluationFaceFailureFistulaGoalsGrowthHemodialysisImageIncidenceInkInternationalInterventionIntuitionLeadLesionLiquid substanceMeasurementMethodologyMethodsModelingMonitorNeckOperative Surgical ProceduresOutcomePatient SchedulesPatientsPatternPhasePostoperative PeriodPredictive ValueProceduresProcessRadiology SpecialtyRecording of previous eventsResearchRiskSolidSolutionsSpecific qualifier valueStentsStratificationStressSurgeonThrombusTimeTreatment outcomeUncertaintyVeinsVelocimetriesWorkbasecase controlcomputerized toolsdesignfeedinghemodynamicsin vivonovel strategiesprospectivepublic health relevanceresearch facilityresearch studyresidenceresponseshear stresssimulationtime usetooltreatment planningvascular bedvirtual
项目摘要
DESCRIPTION (provided by applicant): The proposed research is aimed at developing a computational tool which would reliably predict blood vessel remodeling resulting from vascular interventions. In planning interventions which result in flow alterations, clinicians often rely on
intuition rather than solid scientific evidence. Reducing this uncertainty provides an exciting opportunity for computational modeling methods which could be used to explore various interventional options. Recent advances in patient-specific computational fluid dynamics (CFD) modeling indicate that these methods might now be sufficiently mature for this task. However, an important challenge for the adoption of postoperative flow modeling is the scarcity of well-controlled cases where accurate predictions of subsequent vascular changes have been demonstrated. Furthermore, CFD methods generally lack information about the flow in the proximal and distal circulation. We propose a novel approach where these flow boundary conditions will be obtained with in vivo measurements using time-resolved phase-contrast MR velocimetry (4D MRV). The proposed image-based CFD methodology will be applied on a patient-specific basis to three types of vascular interventions with differing functional and anatomic complexities. These include: maturation of arteriovenous fistulas created for hemodialysis access; fusiform cerebral aneurysms treated by occlusion of one or more proximal vessels; and finally, fusiform cerebral aneurysms treated by flow diverter stents. Currently, there
is a high incidence of unsuccessful treatment outcomes in both fusiform aneurysms and arteriovenous fistulas. The proposed image-based CFD methodology can evaluate postoperative values of relevant hemodynamic descriptors and thus identify early indicators of a likely fistula failure, or flag as unsuitable, treatments of fusiform aneurysms that could lead to negative developments such as thrombotic occlusion of a vital perforator. It is expected that this could help in selecting appropriate treatment options and thus increase the number of favorable outcomes. UCSF/VASF has international leaders in vascular surgery, radiology and biomedical research. The full array of clinical and research facilities at UCSF/VA will be available for the proposed research studies. The team assembled to work on this project has a long history of successful and productive collaboration. The vascular/neurovascular surgeons will identify candidate subjects from patients scheduled for treatment by one of the interventional procedures specified above. The CFD-predicted vessel adaptations will be correlated to in vivo observations in order to fine-tune and validate our modeling methods. Once the efficacy and limitations of this methodology are established, it can be used for prospective patient-specific modeling of vascular interventions in order to provide guidance to vascular and neurovascular surgeons. Successful completion of the project will lead to a modeling tool capable of predicting a priori the impact of various treatment options on postoperative vessel remodeling, thereby permitting stratification of patients and individualized treatment.
描述(由申请人提供):拟议的研究旨在开发一种计算工具,能够可靠地预测血管干预引起的血管重塑。在规划导致血流改变的干预措施时,临床医生通常依赖于
直觉而不是可靠的科学证据。减少这种不确定性为计算建模方法提供了令人兴奋的机会,可用于探索各种干预方案。患者特定计算流体动力学 (CFD) 建模的最新进展表明,这些方法对于这项任务来说可能已经足够成熟。然而,采用术后血流模型的一个重要挑战是缺乏能够准确预测后续血管变化的良好控制病例。此外,CFD 方法通常缺乏有关近端和远端循环中的流量的信息。我们提出了一种新颖的方法,其中这些流动边界条件将通过使用时间分辨相衬磁共振测速(4D MRV)的体内测量来获得。所提出的基于图像的 CFD 方法将根据患者具体情况应用于具有不同功能和解剖复杂性的三种类型的血管干预措施。这些包括: 为血液透析通路创建的动静脉瘘的成熟;通过闭塞一根或多根近端血管治疗的梭形脑动脉瘤;最后,通过分流器支架治疗梭形脑动脉瘤。目前,有
梭形动脉瘤和动静脉瘘的治疗失败率很高。所提出的基于图像的 CFD 方法可以评估相关血流动力学描述符的术后值,从而识别可能的瘘管失败的早期指标,或标记为不合适的梭形动脉瘤治疗,这可能导致负面发展,例如重要穿支的血栓闭塞。预计这将有助于选择适当的治疗方案,从而增加有利结果的数量。 UCSF/VASF 在血管外科、放射学和生物医学研究方面拥有国际领先水平。 UCSF/VA 的全套临床和研究设施将可用于拟议的研究。参与该项目的团队有着悠久的成功和富有成效的合作历史。血管/神经血管外科医生将从计划通过上述指定的介入手术之一进行治疗的患者中识别候选受试者。 CFD 预测的血管适应性将与体内观察相关联,以便微调和验证我们的建模方法。一旦确定了这种方法的有效性和局限性,它就可以用于血管干预的前瞻性患者特异性建模,以便为血管和神经血管外科医生提供指导。该项目的成功完成将产生一种建模工具,能够预先预测各种治疗方案对术后血管重塑的影响,从而允许对患者进行分层和个体化治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vitaliy L Rayz其他文献
Vitaliy L Rayz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vitaliy L Rayz', 18)}}的其他基金
Image-Based Numerical Predictions of Hemodynamics following Vascular Intervention
血管介入后基于图像的血流动力学数值预测
- 批准号:
9482518 - 财政年份:2013
- 资助金额:
$ 37.41万 - 项目类别:
Image-Based Numerical Predictions of Hemodynamics following Vascular Intervention
血管介入后基于图像的血流动力学数值预测
- 批准号:
8729448 - 财政年份:2013
- 资助金额:
$ 37.41万 - 项目类别:
Computational modeling of hemodynamics in cerebral aneurysms
脑动脉瘤血流动力学的计算模型
- 批准号:
8051610 - 财政年份:2008
- 资助金额:
$ 37.41万 - 项目类别:
Computational modeling of hemodynamics in cerebral aneurysms
脑动脉瘤血流动力学的计算模型
- 批准号:
7555613 - 财政年份:2008
- 资助金额:
$ 37.41万 - 项目类别:
Computational modeling of hemodynamics in cerebral aneurysms
脑动脉瘤血流动力学的计算模型
- 批准号:
8243595 - 财政年份:2008
- 资助金额:
$ 37.41万 - 项目类别:
Computational modeling of hemodynamics in cerebral aneurysms
脑动脉瘤血流动力学的计算模型
- 批准号:
7470873 - 财政年份:2008
- 资助金额:
$ 37.41万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
dMRI-guided pre-operative planning for supra-total resection of high-grade gliomas
dMRI引导的高级别胶质瘤超全切除术前规划
- 批准号:
10635099 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别: