Image-Based Numerical Predictions of Hemodynamics following Vascular Intervention
血管介入后基于图像的血流动力学数值预测
基本信息
- 批准号:8458176
- 负责人:
- 金额:$ 37.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-03 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAffectAnatomyAneurysmAngiographyArteriesArteriovenous fistulaBiomechanicsBiomedical ResearchBlood CirculationBlood VesselsCerebral AneurysmClinical ResearchClipCollaborationsComputational TechniqueComputer SimulationComputing MethodologiesDescriptorDevelopmentDistalEvaluationFaceFailureFistulaGoalsGrowthHemodialysisImageIncidenceInkInternationalInterventionIntuitionLeadLesionLiquid substanceMeasurementMethodologyMethodsModelingMonitorNeckOperative Surgical ProceduresOutcomePatient SchedulesPatientsPatternPhasePostoperative PeriodPredictive ValueProceduresProcessRadiology SpecialtyRecording of previous eventsResearchRiskSolidSolutionsSpecific qualifier valueStentsStratificationStressSurgeonThrombusTimeTreatment outcomeUncertaintyVeinsVelocimetriesWorkbasecase controlcomputerized toolsdesignfeedinghemodynamicsin vivonovel strategiesprospectivepublic health relevanceresearch facilityresearch studyresidenceresponseshear stresssimulationtime usetooltreatment planningvascular bedvirtual
项目摘要
DESCRIPTION (provided by applicant): The proposed research is aimed at developing a computational tool which would reliably predict blood vessel remodeling resulting from vascular interventions. In planning interventions which result in flow alterations, clinicians often rely on
intuition rather than solid scientific evidence. Reducing this uncertainty provides an exciting opportunity for computational modeling methods which could be used to explore various interventional options. Recent advances in patient-specific computational fluid dynamics (CFD) modeling indicate that these methods might now be sufficiently mature for this task. However, an important challenge for the adoption of postoperative flow modeling is the scarcity of well-controlled cases where accurate predictions of subsequent vascular changes have been demonstrated. Furthermore, CFD methods generally lack information about the flow in the proximal and distal circulation. We propose a novel approach where these flow boundary conditions will be obtained with in vivo measurements using time-resolved phase-contrast MR velocimetry (4D MRV). The proposed image-based CFD methodology will be applied on a patient-specific basis to three types of vascular interventions with differing functional and anatomic complexities. These include: maturation of arteriovenous fistulas created for hemodialysis access; fusiform cerebral aneurysms treated by occlusion of one or more proximal vessels; and finally, fusiform cerebral aneurysms treated by flow diverter stents. Currently, there
is a high incidence of unsuccessful treatment outcomes in both fusiform aneurysms and arteriovenous fistulas. The proposed image-based CFD methodology can evaluate postoperative values of relevant hemodynamic descriptors and thus identify early indicators of a likely fistula failure, or flag as unsuitable, treatments of fusiform aneurysms that could lead to negative developments such as thrombotic occlusion of a vital perforator. It is expected that this could help in selecting appropriate treatment options and thus increase the number of favorable outcomes. UCSF/VASF has international leaders in vascular surgery, radiology and biomedical research. The full array of clinical and research facilities at UCSF/VA will be available for the proposed research studies. The team assembled to work on this project has a long history of successful and productive collaboration. The vascular/neurovascular surgeons will identify candidate subjects from patients scheduled for treatment by one of the interventional procedures specified above. The CFD-predicted vessel adaptations will be correlated to in vivo observations in order to fine-tune and validate our modeling methods. Once the efficacy and limitations of this methodology are established, it can be used for prospective patient-specific modeling of vascular interventions in order to provide guidance to vascular and neurovascular surgeons. Successful completion of the project will lead to a modeling tool capable of predicting a priori the impact of various treatment options on postoperative vessel remodeling, thereby permitting stratification of patients and individualized treatment.
描述(由申请人提供):拟议的研究旨在开发一种计算工具,该工具可以可靠地预测由血管干预引起的血管重塑。在导致流动变化的计划干预措施中,临床医生经常依靠
直觉而不是扎实的科学证据。降低这种不确定性为计算建模方法提供了一个令人兴奋的机会,该方法可用于探索各种介入选项。特定于患者的计算流体动力学(CFD)建模的最新进展表明,这些方法现在可能已经足够成熟。然而,采用术后流动建模的重要挑战是缺乏控制良好的情况,在这些情况下,已经证明了对随后的血管变化的准确预测。此外,CFD方法通常缺乏有关近端和远端循环中流动的信息。我们提出了一种新的方法,其中将使用时间分辨的相位对比度MR Velocimetry(4D MRV)在体内测量中获得这些流量边界条件。提出的基于图像的CFD方法将以患者特定的基础应用于具有不同功能和解剖复杂性不同的三种类型的血管干预措施。其中包括:为血液透析访问而创建的动静脉瘘的成熟;通过闭塞一个或多个近端血管治疗的螺和脑动脉瘤;最后,由流动剂支架处理的螺和脑动脉瘤。目前,那里
是梭形动脉瘤和动静脉瘘的高度治疗结果的高发病率。提出的基于图像的CFD方法可以评估相关血液动力学描述符的术后值,从而确定可能导致诸如重要的plotorator的血栓性闭塞的梭形动脉瘤的治疗方法。预计这可能有助于选择适当的治疗方案,从而增加有利结果的数量。 UCSF/VASF在血管外科,放射学和生物医学研究方面具有国际领导者。 UCSF/VA的各种临床和研究设施将用于拟议的研究。团队集会从事该项目的工作,有着悠久的成功和富有成效的合作历史。血管/神经血管外科医生将通过上述介入程序之一从计划治疗的患者中识别出候选受试者。为了微调和验证我们的建模方法,CFD预测的血管适应将与体内观测值相关。一旦建立了这种方法的功效和局限性,它可用于对血管干预的前瞻性患者特异性建模,以便为血管和神经血管外科医师提供指导。成功完成该项目将导致一个建模工具,能够先验预测各种治疗方案对术后重塑的影响,从而允许对患者进行分层和个性化治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vitaliy L Rayz其他文献
Vitaliy L Rayz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vitaliy L Rayz', 18)}}的其他基金
Image-Based Numerical Predictions of Hemodynamics following Vascular Intervention
血管介入后基于图像的血流动力学数值预测
- 批准号:
9482518 - 财政年份:2013
- 资助金额:
$ 37.41万 - 项目类别:
Image-Based Numerical Predictions of Hemodynamics following Vascular Intervention
血管介入后基于图像的血流动力学数值预测
- 批准号:
8729448 - 财政年份:2013
- 资助金额:
$ 37.41万 - 项目类别:
Computational modeling of hemodynamics in cerebral aneurysms
脑动脉瘤血流动力学的计算模型
- 批准号:
8051610 - 财政年份:2008
- 资助金额:
$ 37.41万 - 项目类别:
Computational modeling of hemodynamics in cerebral aneurysms
脑动脉瘤血流动力学的计算模型
- 批准号:
7555613 - 财政年份:2008
- 资助金额:
$ 37.41万 - 项目类别:
Computational modeling of hemodynamics in cerebral aneurysms
脑动脉瘤血流动力学的计算模型
- 批准号:
8243595 - 财政年份:2008
- 资助金额:
$ 37.41万 - 项目类别:
Computational modeling of hemodynamics in cerebral aneurysms
脑动脉瘤血流动力学的计算模型
- 批准号:
7470873 - 财政年份:2008
- 资助金额:
$ 37.41万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
dMRI-guided pre-operative planning for supra-total resection of high-grade gliomas
dMRI引导的高级别胶质瘤超全切除术前规划
- 批准号:
10635099 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别:
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 37.41万 - 项目类别: