CRCNS:Dissecting brain-computer interfaces:a manifold & feedback-control approach
CRCNS:剖析脑机接口:流形
基本信息
- 批准号:8336883
- 负责人:
- 金额:$ 30.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-23 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdoptedAlgorithmsAmputeesAreaBehavioralBiologicalChronicClinicalClinical TrialsCollaborationsComplexComputersDataDisabled PersonsEducational process of instructingElectrodesEngineeringEnvironmentFeedbackGoalsIndividualLaboratoriesLearningLimb structureMapsMethodsModelingMotor CortexMovementNeurosciencesParalysedPatientsPatternPerformancePlantsPostdoctoral FellowProsthesisQuality of lifeResearchResearch PersonnelStudentsSystemTestingTrainingTranslatingTranslationsWorkanalytical methodarmbasebrain computer interfaceclinical practicecomputerized data processingdesignfeedingimprovedkinematicsmotor controlmotor learningneural circuitneuromechanismneuroregulationnext generationnonhuman primatenovelprogramsrelating to nervous systemresearch studysensory feedbackstemtheories
项目摘要
DESCRIPTION (provided by applicant): Brain-computer interfaces (BCI) can assist paralyzed individuals and amputees by translating their neural activity into movements of a BCI plant, such as a computer cursor or prosthetic limb. For many years, the field sought offline decoders that could best map neural activity to arm movements. It has become increasingly recognized that designing an effective online, closed-loop decoder is quite a different challenge. A key difference is that, in a closed-loop setting, the subject receives sensory feedback about the state of the BCI plant and can compensate for errors by generating new neural activity patterns. To engineer clinically-viable, closed-loop BCI systems, many fundamental questions about the neural underpinnings of their performance must be answered. Can subjects generate arbitrary neural activity patterns to compensate for errors? Do subjects form an internal model of the BCI plant to achieve proficient control in the presence of noisy, delayed feedback? Do subjects exploit the redundancy inherent in the mapping from neural activity to BCI plant kinematics to maximize control accuracy? A critical roadblock for answering these questions is the lack of an appropriate statistical framework to rigorously analyze closed-loop BCI data on a timestep-by-timestep basis. We propose to develop such a framework inspired by control theory, in close conjunction with novel closed-loop BCI experiments. We will train non-human primates to perform dextrous control of a BCI cursor using neural activity recorded in primary motor cortex with chronic, multi-electrode arrays. We will test the hypothesis that BCI learning depends on constraints imposed by the underlying neural circuitry. In parallel, we will develop and validate algorithms to explain the observed, high-dimensional neural activity at each timestep by accounting for the sensory feedback, subject's internal model of the BCI cursor, and behavioral task goals. We will then leverage the developed algorithms to investigate whether subjects can exploit neural redundancy during BCI control. Broader Impact: We envision five areas of broader impact. First, BCI systems promise to dramatically improve the quality of life for disabled patients. Clinical trials are ongoing, so opportunities exist to translate our research directly and in the near term into clinical practice. Second, our understanding of the neural basis for arm movement control is still incomplete, in large part because the system is so complex. BCIs provide a simplified motor control system, where a well-defined relationship exists between neural activity and movement. As such, BCIs provide a novel experimental testbed to investigate the neural mechanisms of motor control and learning. Third, the statistical framework we develop may be applicable to the study of feedback control systems in other domains. Fourth, with the advent of large-scale neural recordings, systems neuroscience is becoming a far more quantitative field. The next generation of researchers must be well-versed in computational and biological principles. We believe that our collaboration provides an excellent dual-training environment for our students and postdocs. Fifth, our research discoveries can directly feed into our classroom teaching. Yu teaches Neural Signal Processing at CMU and Batista teaches Control Theory in Neuroscience at Pitt; both are annual, graduate-level courses. Intellectual Merit: In the last decade, several groups have demonstrated compelling proof-of- concept laboratory demonstrations of closed-loop BCI control. For clinical translation, one of the major challenges is to improve the performance and robustness of BCI systems. To make this leap, we believe that it is critical to rigorously study existing systems to understand i) why some BCI decoders work better than others, ii) to what extent we can depend on the subjects' ability to learn, and iii) the neural strategies adopted by the subjects for proficient control. There is a long-overdue need for a general statistical framework for dissecting closed-loop BCI data, which we propose to develop. Discoveries enabled by the developed methods will help us and others in the field to design high-performance, clinically-viable BCI systems that allow the subject to quickly reach and maintain a high level of proficiency.
描述(由申请人提供):脑机接口(BCI)可以通过将瘫痪者和截肢者的神经活动转化为 BCI 设备(例如计算机光标或假肢)的运动来帮助他们。多年来,该领域一直在寻找能够最好地将神经活动映射到手臂运动的离线解码器。人们越来越认识到,设计有效的在线闭环解码器是一个完全不同的挑战。一个关键的区别是,在闭环设置中,受试者接收有关 BCI 设备状态的感官反馈,并可以通过生成新的神经活动模式来补偿错误。为了设计临床上可行的闭环脑机接口系统,必须回答有关其性能的神经基础的许多基本问题。受试者可以产生任意的神经活动模式来补偿错误吗?受试者是否形成了脑机接口装置的内部模型,以在存在噪声、延迟反馈的情况下实现熟练的控制?受试者是否利用从神经活动到 BCI 植物运动学映射中固有的冗余来最大限度地提高控制精度?回答这些问题的一个关键障碍是缺乏适当的统计框架来逐个时间步严格分析闭环 BCI 数据。我们建议开发这样一个受控制理论启发的框架,并与新颖的闭环 BCI 实验紧密结合。我们将训练非人类灵长类动物使用初级运动皮层中记录的神经活动和慢性多电极阵列对 BCI 光标进行灵巧控制。我们将测试 BCI 学习取决于底层神经电路施加的约束的假设。与此同时,我们将开发和验证算法,通过考虑感觉反馈、BCI 光标的受试者内部模型和行为任务目标来解释每个时间步观察到的高维神经活动。然后,我们将利用开发的算法来研究受试者是否可以在 BCI 控制期间利用神经冗余。更广泛的影响:我们设想了五个具有更广泛影响的领域。首先,BCI 系统有望显着改善残疾患者的生活质量。临床试验正在进行中,因此有机会在短期内将我们的研究直接转化为临床实践。其次,我们对手臂运动控制的神经基础的理解仍然不完整,很大程度上是因为该系统非常复杂。脑机接口提供了一个简化的运动控制系统,其中神经活动和运动之间存在明确的关系。因此,脑机接口提供了一个新颖的实验测试平台来研究运动控制和学习的神经机制。第三,我们开发的统计框架可能适用于其他领域的反馈控制系统的研究。第四,随着大规模神经记录的出现,系统神经科学正在成为一个更加定量的领域。下一代研究人员必须精通计算和生物学原理。我们相信我们的合作为我们的学生和博士后提供了一个优秀的双元培训环境。第五,我们的研究发现可以直接反馈到我们的课堂教学中。 Yu 在 CMU 教授神经信号处理,Batista 在皮特教授神经科学控制理论;两者都是年度研究生课程。智力优势:在过去十年中,多个小组已经展示了令人信服的闭环 BCI 控制概念验证实验室演示。对于临床翻译来说,主要挑战之一是提高 BCI 系统的性能和稳健性。为了实现这一飞跃,我们认为严格研究现有系统以理解 i) 为什么某些 BCI 解码器比其他解码器工作得更好,ii) 我们可以在多大程度上依赖受试者的学习能力,以及 iii) 神经网络至关重要。受试者为熟练控制而采取的策略。人们早就需要一个用于剖析闭环 BCI 数据的通用统计框架,我们建议开发该框架。所开发方法的发现将帮助我们和该领域的其他人设计高性能、临床可行的 BCI 系统,使受试者能够快速达到并保持高水平的熟练程度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Paul Batista其他文献
Aaron Paul Batista的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Paul Batista', 18)}}的其他基金
CRCNS Research Proposal: Collaborative Research: Neural Basis of Motor Expertise
CRCNS 研究提案:合作研究:运动专业知识的神经基础
- 批准号:
10405066 - 财政年份:2020
- 资助金额:
$ 30.9万 - 项目类别:
CRCNS Research Proposal: Collaborative Research: Neural Basis of Motor Expertise
CRCNS 研究提案:合作研究:运动专业知识的神经基础
- 批准号:
10623241 - 财政年份:2020
- 资助金额:
$ 30.9万 - 项目类别:
CRCNS: Dynamical Constraints on Neural Population Activity
CRCNS:神经群体活动的动态约束
- 批准号:
10268145 - 财政年份:2017
- 资助金额:
$ 30.9万 - 项目类别:
Multisensory Integration in Action: a Multineuronal and Feedback-Control Approach
行动中的多感觉整合:多神经元和反馈控制方法
- 批准号:
9219134 - 财政年份:2017
- 资助金额:
$ 30.9万 - 项目类别:
CRCNS: Dynamical Constraints on Neural Population Activity
CRCNS:神经群体活动的动态约束
- 批准号:
9472546 - 财政年份:2017
- 资助金额:
$ 30.9万 - 项目类别:
CRCNS: Dynamical Constraints on Neural Population Activity
CRCNS:神经群体活动的动态约束
- 批准号:
9906941 - 财政年份:2017
- 资助金额:
$ 30.9万 - 项目类别:
Differential contributions of frontal lobe areas to eye/hand coordination
额叶区域对眼/手协调的不同贡献
- 批准号:
8685340 - 财政年份:2011
- 资助金额:
$ 30.9万 - 项目类别:
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Matched Design with Sensitivity Analysis for Observational Survival Data in Cardiovascular Patient Management using EMR Data
使用 EMR 数据对心血管患者管理中的观察性生存数据进行匹配设计和敏感性分析
- 批准号:
10731172 - 财政年份:2023
- 资助金额:
$ 30.9万 - 项目类别:
Dance4Healing: a feasibility study to reduce health disparity and increase engagement of an intergenerational telehealth program for minority diabetes patients and their care partners.
Dance4Healing:一项可行性研究,旨在减少少数族裔糖尿病患者及其护理伙伴的健康差距并提高代际远程医疗计划的参与度。
- 批准号:
10604415 - 财政年份:2022
- 资助金额:
$ 30.9万 - 项目类别:
3D Fourier Imaging System for High Throughput Analyses of Cancer Organoids
用于癌症类器官高通量分析的 3D 傅里叶成像系统
- 批准号:
10577796 - 财政年份:2022
- 资助金额:
$ 30.9万 - 项目类别:
3D Fourier Imaging System for High Throughput Analyses of Cancer Organoids
用于癌症类器官高通量分析的 3D 傅里叶成像系统
- 批准号:
10358186 - 财政年份:2022
- 资助金额:
$ 30.9万 - 项目类别:
EpiMoRPH: A simulation environment for generating spatially-refined intervention strategies for the control of infectious disease
EpiMoRPH:用于生成控制传染病的空间精细干预策略的模拟环境
- 批准号:
10412872 - 财政年份:2022
- 资助金额:
$ 30.9万 - 项目类别: