Neurotransmitter-based poly(aminoglycerol ester)s
基于神经递质的聚(氨基甘油酯)
基本信息
- 批准号:7493430
- 负责人:
- 金额:$ 1.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAmericanAnimal ModelAutologousAutologous TransplantationBehavioralBiocompatible MaterialsBiologicalBrainChemicalsClinicalCouplingDataDefectDevelopmentDopamineElectrophysiology (science)Embryonic DevelopmentEnvironmentEquipmentEstersExtracellular MatrixFamilyFibrinFigs - dietaryFoundationsFundingGelGoalsIn VitroInjuryLaboratoriesMedicineMethodsMitoticMolecularMorbidity - disease rateNatural regenerationNerveNerve RegenerationNerve TissueNeuritesNeuronsNeurotransmitter ReceptorNeurotransmittersOperative Surgical ProceduresOutcomePeripheral NervesPlayPliabilityPolymersPrevention approachPrincipal InvestigatorPublishingRangeRateRattusRecovery of FunctionRegenerative MedicineResearchResearch PersonnelRoleSiteStandards of Weights and MeasuresStructureStructure-Activity RelationshipTestingVertebral columnWorkaxon growthbasebiodegradable polymercostdensitydesignexperiencefunctional groupfunctional restorationhydrophilicityimprovedin vivoinnovationinsightmacromoleculemorphogensmultidisciplinarynanofibernanoscalenerve injurynervous system disorderneurogenesisneurotrophic factornovelnovel strategiespainful neuropathyresearch studyresponsesciatic nervetool
项目摘要
DESCRIPTION: Neurological disorders affect 20% of Americans, with an estimated annual cost of $400 billion. Current clinical approaches are unable to effectively restore the functions in damaged nerves. Our long-term goal is to use neuro-inductive biomaterials to restore functions in damaged nervous tissues. The objective of this proposal is to elucidate the structure-function relationship of a unique family of neurotransmitter-based biomaterials and explore their potential to regenerate peripheral nerves. The central hypothesis is that rationally-designed biodegradable materials with neurotransmitter functional groups can induce precise responses from neurons through their specific neurotransmitter receptors, and enhance their survival and regenerative capability. Guided by strong preliminary data, this hypothesis will be tested by pursuing two specific aims: (1) Control neuron-material interactions by systematically varying the structure of neurotransmitter-based polymers; and (2) Regenerate peripheral nerves using electrospun neurotransmitter-based polymer nanofibers. Under the first aim, an already proven synthesis strategy will be used to systematically vary the structure of the polymer regarding the backbone flexibility and hydrophilicity, and the type and density of neurotransmitters. We will examine the effects of a structural perturbation on a material's interactions with neurons in vitro and nerves in vivo. Under the second aim, we will create nerve guidance conduits using electrospun nanofibers with equipment that is already in our laboratory. The efficacy of these conduits in regenerating transected sciatic nerve will be evaluated using behavioral, electrophysiological, histological, and immunohistochemical methods. This approach is innovative because it uses chemical messengers to impart bioactivity to synthetic biodegradable polymers. The combination of work in aims 1 and 2 is expected to create a biomaterial platform capable of presenting defined density of neurotransmitter functional groups and nano-scale contact guidance to control neuronal activities. This multidisciplinary proposal combines the complementary expertise of the Principal Investigator in biomaterial design and regenerative medicine, and the Collaborators in neuropathic pain and electrophysiology. When successful, the proposed research will represent a significant advance in the rational design of biomaterials, and may enable new approaches in functional nerve regeneration. Current clinical approaches are unable to effectively restore the functions in damaged nerves. The proposed research seeks to determine the structure-function relationship of a family of novel neurotransmitter-based biomaterials and to apply these materials in functional nerve regeneration.
描述:神经系统疾病影响着 20% 的美国人,估计每年造成 4000 亿美元的损失。目前的临床方法无法有效恢复受损神经的功能。我们的长期目标是利用神经诱导生物材料来恢复受损神经组织的功能。该提案的目的是阐明基于神经递质的独特生物材料家族的结构-功能关系,并探索它们再生周围神经的潜力。中心假设是,合理设计的具有神经递质功能团的生物可降解材料可以通过其特定的神经递质受体诱导神经元的精确反应,并增强其生存和再生能力。在强有力的初步数据的指导下,这一假设将通过追求两个具体目标进行检验:(1)通过系统地改变基于神经递质的聚合物的结构来控制神经元与材料的相互作用; (2) 使用基于电纺神经递质的聚合物纳米纤维再生周围神经。在第一个目标下,将使用已经经过验证的合成策略来系统地改变聚合物的结构,包括主链柔性和亲水性以及神经递质的类型和密度。我们将研究结构扰动对材料与体外神经元和体内神经相互作用的影响。根据第二个目标,我们将使用静电纺纳米纤维和我们实验室已有的设备创建神经引导导管。将使用行为、电生理学、组织学和免疫组织化学方法来评估这些导管在再生横切坐骨神经中的功效。这种方法具有创新性,因为它利用化学信使赋予合成的可生物降解聚合物生物活性。目标 1 和目标 2 的工作相结合,预计将创建一个生物材料平台,能够呈现定义的神经递质功能组密度和控制神经元活动的纳米级接触引导。这项多学科提案结合了生物材料设计和再生医学方面的首席研究员以及神经病理性疼痛和电生理学方面的合作者的互补专业知识。如果成功,拟议的研究将代表生物材料合理设计的重大进步,并可能实现功能性神经再生的新方法。目前的临床方法无法有效恢复受损神经的功能。拟议的研究旨在确定一系列新型神经递质生物材料的结构-功能关系,并将这些材料应用于功能性神经再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yadong Wang其他文献
Yadong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yadong Wang', 18)}}的其他基金
Novel surface-modified bioresorbable zinc-based stent materials
新型表面改性生物可吸收锌基支架材料
- 批准号:
10282711 - 财政年份:2018
- 资助金额:
$ 1.69万 - 项目类别:
Novel surface-modified bioresorbable zinc-based stent materials
新型表面改性生物可吸收锌基支架材料
- 批准号:
10047332 - 财政年份:2018
- 资助金额:
$ 1.69万 - 项目类别:
Novel surface-modified bioresorbable zinc-based stent materials
新型表面改性生物可吸收锌基支架材料
- 批准号:
9935151 - 财政年份:2018
- 资助金额:
$ 1.69万 - 项目类别:
Extended Release of Bioactive Factors to Treat Refractory Wounds
延长释放生物活性因子来治疗难治性伤口
- 批准号:
9924291 - 财政年份:2016
- 资助金额:
$ 1.69万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 1.69万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 1.69万 - 项目类别:
BIN1-interactome in Alzheimer's disease pathophysiology
BIN1-相互作用组在阿尔茨海默病病理生理学中的作用
- 批准号:
10677190 - 财政年份:2023
- 资助金额:
$ 1.69万 - 项目类别:
Evaluating the Implementation and De-Implementation of Pandemic Era SNAP Expansion Policies on Diet and Health: A Mixed Methods Project
评估大流行时代 SNAP 饮食和健康扩展政策的实施和取消实施:混合方法项目
- 批准号:
10832272 - 财政年份:2023
- 资助金额:
$ 1.69万 - 项目类别:
Urban American Indian/Alaska Native Cultural Eating Values and Behaviors: Community-based, mixed methods research to inform a holistic and culturally-informed diabetes prevention intervention program
城市美洲印第安人/阿拉斯加原住民文化饮食价值观和行为:基于社区的混合方法研究,为全面且文化丰富的糖尿病预防干预计划提供信息
- 批准号:
10679529 - 财政年份:2023
- 资助金额:
$ 1.69万 - 项目类别: