A Novel Nanomaterials Approach for Cancer Imaging and Therapeutic Treatment

用于癌症成像和治疗的新型纳米材料方法

基本信息

  • 批准号:
    7536359
  • 负责人:
  • 金额:
    $ 24.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cancer treatment today is in need of tumor-specific and effective therapies that do not harm the patient and thereby compromise treatment efficacy and prolong recovery time. A multi-modal therapeutic and imaging agent that does not damage healthy living tissue would have tremendous benefit to researchers and victims of this deadly disease. Nanomaterials have the potential to provide the next- generation solutions that are needed, as they offer 1) a unique size range closely matching that of cells (1 to 1,000 nm), 2) a substantial multifunctional capability, and 3) an inherently large surface-to-volume ratio. The proposed research will focus on synthesizing a novel nanomaterial construct and validating its effectiveness. As envisioned, this new construct will offer a multimodal therapeutic advantage by acting simultaneously as an image contrast enhancement agent, a targeted drug-delivery vehicle, a thermal sensitizer, and a generator of singlet oxygen. This research project is specifically designed to address the special NIH STTR Phase I solicitation "Bioengineering Nanotechnology Initiative" (PA-06-008). The expanded project timeline and budget, our strong preliminary data, and the highly experienced team all combine to directly address the goals of this special NIH solicitation. ADA Technologies has assembled a highly qualified R&D team to execute this challenging project. ADA's Principal Investigator is an expert on nanotechnology and nanometrology; the academic STTR partners at Virginia Tech offer substantial experience and equipment for nanomaterials synthesis and hyperthermia treatment; and the Director of the Comprehensive Cancer Center at Wake Forest University offers his services as an expert consultant on cancer research. Given that a primitive version of the proposed nanostructure has already shown efficacy with prostate cancer cells, we will focus on prostate cancer for the initial proof of concept in Phase I. Phase I tasks are designed to validate our ability to create the new nanomaterial structures and to demonstrate the feasibility of nanomaterials synthesis as well as hyperthermia and reactive oxygen treatments. In vitro tissue representative phantoms and preliminary in vivo models will be assessed. Phase I success will set the stage in Phase II for more-complex nanostructure synthesis (including antibody and drug-delivery targeting) and larger- scale in vivo studies. Within Phase III, we will partner will bio-pharma industry to expedite clinical studies and commercialization of this promising bionanotechnology. Ultimately, this nanostructured material will benefit patients, who will receive a more effective and benign treatment protocol; researchers, who will benefit from a highly effective new multi-modal drug agent; and the bio-pharma industry, which will have a more-marketable product for cancer treatment. The potential worldwide market could reach billions of dollars per year through the research's anticipated application to multiple cancer types. PUBLIC HEALTH REELEVANCE: In an age of major medical advances, tumor-specific, non-toxic and effective therapies against cancer cells do not exist as an option for today's 21st-century patients. Next-generation nanomaterials offer new avenues for more efficacious and harmless options for cancer treatment with their ability to be customized with imaging agents, drug molecules, and highly conducting materials for thermal treatment. The proposed, multi-phase STTR project is focused on developing a new, multi-modal nanomaterial for treating numerous cancer types through its enhanced imaging, improved selectivity of targeted treatment, and minimally invasive therapeutic delivery.
描述(由申请人提供):当今的癌症治疗需要针对肿瘤的有效疗法,该疗法不会伤害患者,从而损害治疗效果并延长恢复时间。一种不损害健康活体组织的多模式治疗和成像剂将为研究人员和这种致命疾病的受害者带来巨大的好处。纳米材料有潜力提供所需的下一代解决方案,因为它们提供 1) 与细胞紧密匹配的独特尺寸范围(1 至 1,000 nm),2) 强大的多功能能力,以及 3) 固有的大表面与体积之比。拟议的研究将侧重于合成新型纳米材料结构并验证其有效性。正如设想的那样,这种新结构将通过同时充当图像对比增强剂、靶向药物递送载体、热敏剂和单线态氧发生器来提供多模式治疗优势。该研究项目是专门为解决 NIH STTR 第一阶段特殊征集“生物工程纳米技术倡议”(PA-06-008) 而设计的。扩大的项目时间表和预算、强大的初步数据以及经验丰富的团队,所有这些结合在一起,可以直接实现本次 NIH 特别征集的目标。 ADA Technologies 组建了一支高素质的研发团队来执行这一具有挑战性的项目。 ADA 的首席研究员是纳米技术和纳米计量学方面的专家;弗吉尼亚理工大学的学术 STTR 合作伙伴为纳米材料合成和热疗治疗提供丰富的经验和设备;维克森林大学综合癌症中心主任提供癌症研究专家顾问的服务。鉴于所提出的纳米结构的原始版本已经显示出对前列腺癌细胞的功效,我们将重点关注前列腺癌,以进行第一阶段的初步概念验证。第一阶段的任务旨在验证我们创建新纳米材料结构和证明纳米材料合成以及热疗和活性氧治疗的可行性。将评估体外组织代表性模型和初步体内模型。第一阶段的成功将为第二阶段更复杂的纳米结构合成(包括抗体和药物递送靶向)和更大规模的体内研究奠定基础。在第三阶段,我们将与生物制药行业合作,加快这一有前景的生物纳米技术的临床研究和商业化。最终,这种纳米结构材料将使患者受益,他们将接受更有效和良性的治疗方案;研究人员将受益于高效的新型多模式药物制剂;以及生物制药行业,该行业将拥有更畅销的癌症治疗产品。通过该研究预期应用于多种癌症类型,全球潜在市场每年可能达到数十亿美元。公共卫生相关性:在医学取得重大进步的时代,针对肿瘤细胞的无毒且有效的肿瘤特异性疗法对于当今 21 世纪的患者来说并不存在。下一代纳米材料能够利用显像剂、药物分子和用于热处理的高传导材料进行定制,为更有效、无害的癌症治疗选择提供了新途径。拟议的多阶段 STTR 项目专注于开发一种新型多模式纳米材料,通过增强成像、提高靶向治疗的选择性和微创治疗递送来治疗多种癌症类型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAYANGDEV NAHA其他文献

SAYANGDEV NAHA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAYANGDEV NAHA', 18)}}的其他基金

A Novel Nanomaterials Approach for Cancer Imaging and Therapeutic Treatment
用于癌症成像和治疗的新型纳米材料方法
  • 批准号:
    7679581
  • 财政年份:
    2008
  • 资助金额:
    $ 24.93万
  • 项目类别:

相似国自然基金

年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
  • 批准号:
    82301217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
  • 批准号:
    82301229
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
  • 批准号:
    52375281
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
  • 批准号:
    82373667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Potential of tissue kallikreins as therapeutic targets for neuropsychiatric lupus
组织激肽释放酶作为神经精神狼疮治疗靶点的潜力
  • 批准号:
    10667764
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
Mucosal immunity to sapovirus in early childhood
幼儿期对沙波病毒的粘膜免疫
  • 批准号:
    10677051
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
Ion Mobility Spectrometry- quadrupole Time-of-Flight (IMS-qToF) Mass Spectrometer
离子淌度光谱仪 - 四极杆飞行时间 (IMS-qToF) 质谱仪
  • 批准号:
    10630627
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
  • 批准号:
    10819340
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
  • 批准号:
    10651082
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了