A CRSIPR/dCas9-Targeted Histone Demethylation Induces GAA repeat contraction
CRSIPR/dCas9 靶向组蛋白去甲基化诱导 GAA 重复收缩
基本信息
- 批准号:10649032
- 负责人:
- 金额:$ 7.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3&apos Flanking Region8-hydroxyguanosineAconitate HydrataseAdvanced DevelopmentAlkylating AgentsAtaxiaBase Excision RepairsBiological AssayBrainCardiomyopathiesCell Differentiation InductionCell Differentiation processCellsChromatinClone CellsClustered Regularly Interspaced Short Palindromic RepeatsCodeContractsDNADNA Double Strand BreakDNA Modification ProcessDNA Polymerase betaDNA RepairDNA SequenceDNMT3aDiseaseEpigenetic ProcessExcision RepairFriedreich AtaxiaGene ExpressionGene SilencingGene TargetingGenesGenomeGenome StabilityGenomic InstabilityGuide RNAHeterochromatinHistone H3HistonesHumanIntronsIronLinkLobeLysineMapsMediatingMessenger RNAMethylationMissionNeurodegenerative DisordersNeuromuscular DiseasesNeuronsOxidative StressPathway interactionsPatientsPhenotypePlasmidsProductionProteinsRTH-1 NucleaseResearchStreptococcus pyogenesSulfurSystemTestingTissuesTranscription ElongationTransfectionTransgenic MiceUnited States National Institutes of HealthUp-RegulationVertebral columnautosomedemethylationdisabilityeffective therapyfrataxingene therapyhistone demethylasehistone methylationhistone modificationinduced pluripotent stem cellinsightmitochondrial dysfunctionnerve stem cellneuralnovelnovel strategiespublic health relevancerecruitrepair enzymesynergismtemozolomide
项目摘要
Friedreich’s Ataxia (FRDA) is the most common autosomal recessive neuromuscular disorder. The disease is
caused by expanded GAA repeats in the first intron of the frataxin (FXN) gene. No effective treatments for the
disease are available, owing to the expanded repeats remaining in the patients’ genome. Thus, a treatment that
targets the expanded GAA repeats is urgently needed. We found that the inhibition of H3K9 trimethylation
(H3K9me3) synergized with DNA base excision repair (BER) to contract the expanded GAA repeats and
upregulate FXN gene expression in FRDA neural cells and transgenic mouse brain. We hypothesize that GAA
repeat-targeted demethylation of H3K9me2/me3 at the FXN gene can disrupt heterochromatin and induce BER
to contract the expanded repeats. To test this hypothesis, we propose to use a CRISPR/Cas9 system with the
histone H3-trimethyl-L-Lysine 9 demethylase 4D (KDM4D) fused to catalytically inactivated S. pyogenes Cas9
(CRISPR/dCas9-KDM4D) to induce GAA repeat-targeted demethylation of H3K9me2/me3 in FRDA neural cells.
We will pursue two Specific Aims. Aim 1 is to determine if the GAA repeat-targeted CRISPR/dCas9-KDM4D can
demethylate H3K9me2/me3 to disrupt heterochromatin at the FXN gene in FRDA neural cells. First, we will fuse
the human KDM4D gene with the S. pyogenes dCas9 using the plasmid pCRISPR/dCas9-DNMT3A-PuroR_v2
as a backbone. KDM4D will be linked to the C-terminus of dCas9 through the XTEN80 linker chain. The
sequences for coding the single-strand guide RNAs (sgRNAs) that target the 5’- or 3’-flanking regions of the
expanded GAA repeats will also be inserted into the plasmid. The plasmid will be stably transfected into FRDA
neural progenitor cells (NPCs) differentiated from induced pluripotent stem cells (iPSCs) of an FRDA patient.
Second, we will determine if the repeat-targeted dCas9-KDM4D can reduce the level of H3K9me2/me3 and
alleviate heterochromatinization on the expanded repeats in FRDA neural cells differentiated from NPCs. Aim 2
is to determine if the GAA repeat-targeted CRISPR/dCas9-KDM4D promotes GAA repeat contraction through
BER, leading to the upregulation of the FXN gene expression and the alleviation of mitochondrial dysfunction in
FRDA neural cells. First, we will determine if dCas9-KDM4D can lead to GAA repeat contraction. We will then
determine if dCas9-KDM4D can facilitate the recruitment of the key BER enzymes, DNA polymerase β (Pol β),
and flap endonuclease 1 (FEN1) to the expanded repeats in FRDA neural cells. Second, we will test if dCas9-
KDM4D can result in the upregulation of the FXN gene expression and alleviate mitochondrial dysfunction. Our
study will provide proof of concept for a gene-targeted contraction of expanded GAA repeats via the synergy
between histone modifications and DNA repair. The results will reveal the mechanisms underlying
CRISPR/dCas9-KDM4D targeted contractions of expanded GAA repeats through the interplay of histone
demethylation with BER. The study will further open a new avenue to develop effective gene therapy for FRDA.
弗里德赖希共济失调 (FRDA) 是最常见的常染色体隐性神经肌肉疾病。
由 frataxin (FXN) 基因第一个内含子中的 GAA 重复扩增引起,目前尚无有效治疗方法。
由于患者基因组中保留了扩展的重复序列,因此可以进行治疗。
我们发现抑制H3K9三甲基化是迫切需要的。
(H3K9me3) 与 DNA 碱基切除修复 (BER) 协同作用以收缩扩展的 GAA 重复序列并
上调 FRDA 神经细胞和转基因小鼠大脑中的 FXN 基因表达
FXN 基因处 H3K9me2/me3 的重复靶向去甲基化可破坏异染色质并诱导 BER
为了验证这一假设,我们建议使用 CRISPR/Cas9 系统。
组蛋白 H3-三甲基-L-赖氨酸 9 去甲基酶 4D (KDM4D) 与催化灭活的化脓性链球菌 Cas9 融合
(CRISPR/dCas9-KDM4D) 在 FRDA 神经细胞中诱导 H3K9me2/me3 的 GAA 重复靶向去甲基化。
我们将追求两个具体目标 1 是确定 GAA 重复靶向 CRISPR/dCas9-KDM4D 是否可以。
去甲基化 H3K9me2/me3 以破坏 FRDA 神经细胞中 FXN 基因的异染色质。
使用质粒 pCRISPR/dCas9-DNMT3A-PuroR_v2 将人类 KDM4D 基因与化脓性链球菌 dCas9 结合
作为主链,KDM4D 将通过 XTEN80 连接链连接到 dCas9 的 C 末端。
用于编码单链引导RNA (sgRNA) 的序列,该单链引导RNA 靶向5'-或3'-侧翼区域
扩增的 GAA 重复序列也将被插入到质粒中。质粒将被稳定转染到 FRDA 中。
神经祖细胞 (NPC) 从 FRDA 患者的诱导多能干细胞 (iPSC) 分化而来。
其次,我们将确定重复靶向的 dCas9-KDM4D 是否可以降低 H3K9me2/me3 的水平和
从 NPC 分化而来的 FRDA 神经细胞中扩增重复序列的异染色质化。
目的是确定针对 GAA 重复的 CRISPR/dCas9-KDM4D 是否通过以下方式促进 GAA 重复收缩:
BER,导致 FXN 基因表达上调并减轻线粒体功能障碍
首先,我们将确定 dCas9-KDM4D 是否可以导致 GAA 重复收缩。
确定 dCas9-KDM4D 是否可以促进关键 BER 酶 DNA 聚合酶 β (Pol β) 的招募,
和 FLAG 核酸内切酶 1 (FEN1) 到 FRDA 神经细胞中的扩展重复序列 其次,我们将测试 dCas9- 是否有效。
KDM4D 可导致 FXN 基因表达上调并缓解线粒体功能障碍。
研究将为通过协同作用对扩展的 GAA 重复序列进行基因靶向收缩提供概念证明
研究结果将揭示组蛋白修饰和 DNA 修复之间的潜在机制。
CRISPR/dCas9-KDM4D 通过组蛋白的相互作用靶向扩展 GAA 重复序列的收缩
该研究将进一步为开发有效的 FRDA 基因治疗开辟新途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Liu其他文献
Yuan Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan Liu', 18)}}的其他基金
N6-methyladenosine (m6A) Interplays with RNA and DNA Damage to Regulate DNA Repair
N6-甲基腺苷 (m6A) 与 RNA 和 DNA 损伤相互作用以调节 DNA 修复
- 批准号:
10649063 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Association between early Candida infection (oral thrush) and severe early childhood caries
早期念珠菌感染(鹅口疮)与严重儿童早期龋齿之间的关联
- 批准号:
10739505 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
N6-methyladenosine (m6A) Interplays with RNA and DNA Damage to Regulate DNA Repair
N6-甲基腺苷 (m6A) 与 RNA 和 DNA 损伤相互作用以调节 DNA 修复
- 批准号:
10835455 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Core 3: Bioinformatics and Biostatistics Core
核心3:生物信息学和生物统计学核心
- 批准号:
10631168 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
Core 3: Bioinformatics and Biostatistics Core
核心3:生物信息学和生物统计学核心
- 批准号:
10411671 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
DCAF7/HDAC4/TFEB axis in acute lung injury
DCAF7/HDAC4/TFEB 轴在急性肺损伤中的作用
- 批准号:
10413846 - 财政年份:2018
- 资助金额:
$ 7.38万 - 项目类别:
DCAF7/HDAC4/TFEB axis in acute lung injury
DCAF7/HDAC4/TFEB 轴在急性肺损伤中的作用
- 批准号:
10183301 - 财政年份:2018
- 资助金额:
$ 7.38万 - 项目类别:
Trinucleotide Repeat Instability via DNA Damage and Repair
DNA 损伤和修复导致的三核苷酸重复不稳定性
- 批准号:
8960858 - 财政年份:2013
- 资助金额:
$ 7.38万 - 项目类别:
Trinucleotide Repeat Instability via DNA Damage and Repair
DNA 损伤和修复导致的三核苷酸重复不稳定性
- 批准号:
9182889 - 财政年份:2013
- 资助金额:
$ 7.38万 - 项目类别:
相似海外基金
Single molecule detection of L1 insertions and intermediates
L1 插入和中间体的单分子检测
- 批准号:
10662586 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
The role of transcription factor MEOX2 in lipofibroblast function during alveolarization
转录因子 MEOX2 在肺泡化过程中脂肪成纤维细胞功能中的作用
- 批准号:
10598463 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
The role of transcription factor MEOX2 in lipofibroblast function during alveolarization
转录因子 MEOX2 在肺泡化过程中脂肪成纤维细胞功能中的作用
- 批准号:
10385997 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
Human genetic supplementation without donor DNA or a DNA break
无需供体 DNA 或 DNA 断裂的人类基因补充
- 批准号:
10532612 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
Characterization of TRPC6 to predict and prevent chemotherapy-related heart failure
TRPC6 的表征可预测和预防化疗相关心力衰竭
- 批准号:
10705329 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别: