Robot-assisted prostate surgery using augmented reality with deformable models
使用增强现实和可变形模型进行机器人辅助前列腺手术
基本信息
- 批准号:8206964
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomic ModelsAnatomyBiological PreservationCancer EtiologyCancerousCessation of lifeClinicalColorectal CancerComputer softwareCuesDataDevelopmentDiagnosisDimensionsDiseaseEnvironmentEquipmentFeedbackFreedomHumanImageImage-Guided SurgeryImageryImpotenceIncontinenceInterventionLeadMagnetic Resonance ImagingMalignant neoplasm of prostateMedical ImagingMedical TechnologyMethodsModalityModelingMonitorMovementNavigation SystemOperative Surgical ProceduresOutcomePatientsPhaseProceduresProstateProstatectomyProstatic NeoplasmsRadical ProstatectomyResearchRobotRoboticsRoentgen RaysSafetySliceSmall Business Innovation Research GrantStagingStructureSurgeonSurgical InstrumentsSurgical incisionsSystemTactileTechniquesTechnologyTestingTissuesTransrectal UltrasoundUltrasonographyUnited StatesUniversitiesUpdateUser-Computer InterfaceValidationVisionVisualWorkcancer surgerycommercializationcomputer centerimage registrationimage visualizationimprovedmanmenmultimodalitynovelopen sourceprostate surgeryprototyperobot assistancetooltumor
项目摘要
DESCRIPTION (provided by applicant): In this application, we describe our proposed work to develop an augmented display for improved visualization of the prostate and surrounding critical anatomy for robot-assisted prostate surgery. Prostate cancer is the second leading cause of cancer-related deaths in men in the United States. It is estimated that 217,730 men will be diagnosed with and 32,050 men will die of cancer of the prostate in 2010. Approximately 1 man in 6 will be diagnosed with prostate cancer during his lifetime and 1 in 36 will die from the disease. Early stage prostate cancer is potentially cured by surgery, which can be performed in a traditional, open fashion or laparoscopically. Recently, robot-assisted laparoscopic radical prostatectomy (RALP) using the da Vinci(R) surgical robot system has gained wide acceptance. Robotic systems improve surgeon dexterity by incorporating additional degrees of freedom at the end of the tools and offer increased precision and stability of movements. However, since the procedure is performed through small incisions, this technique reduces free sight and tactile feedback compared to open surgery. Surgeons also lose the ability to palpate the prostate to locate tumors and other critical structures such as neurovascular bundles (NVB). Surgeons must rely on visual cues from the video monitor and mentally correlate them with the underlying anatomy, often using information from medical images obtained prior to the procedure. Further complications arise from local deformations in the prostate tissue that occurs throughout the prostatectomy procedure due to the interaction between the surgical instruments and the prostate tissue. Subsequently, the anatomical model generated pre-operatively will need to be updated during the procedure to reflect this deformation. To address the clinical need for more accurate and reliable guidance, we propose to develop a navigation system that provides surgeons with an augmented reality (AR) view that fuses a pre-operative MRI model of the prostate, tumor and surrounding tissues with the da Vinci system laparoscopic video, while compensating for non-rigid prostate tissue deformation using intra-operative transrectal ultrasound (TRUS) imaging.
PUBLIC HEALTH RELEVANCE: Prostate cancer is the second leading cause of cancer-related deaths in men in the United States. It is estimated that 217,730 men will be diagnosed with and 32,050 men will die of cancer of the prostate in 2010. Early stage prostate cancer is potentially cured by surgery, which can be performed using robot-assistance. However, current robot technology does not offer accurate and reliable visual guidance system for surgeons. To address this need, we propose to develop an augmented reality display for improved visualization of the prostate and surrounding critical anatomy robot-assisted prostate surgery.
描述(由申请人提供):在本申请中,我们描述了我们提出的工作,以开发增强显示屏,以改善前列腺的可视化和周围的临界解剖结构,以用于机器人辅助前列腺手术。 前列腺癌是美国男性与癌症相关死亡的第二大原因。 据估计,将被诊断出217,730名男性,32,050名男性将在2010年死于前列腺癌。在他的一生中,大约有1名男性将被诊断出患有前列腺癌,而36分之一将死于该疾病。 早期前列腺癌可能通过手术治愈,可以通过传统的,开放的时尚或腹腔镜进行。 最近,使用DA Vinci(R)手术机器人系统的机器人辅助腹腔镜自由基前列腺切除术(RALP)已获得广泛的接受。 机器人系统通过在工具结束时纳入其他自由度来改善外科医生的灵活性,并提高运动的精度和稳定性。 但是,由于该过程是通过小切口执行的,因此与开放手术相比,该技术可以减少自由视力和触觉反馈。 外科医生还失去了触诊前列腺以定位肿瘤和其他关键结构(例如神经血管束(NVB))的能力。 外科医生必须依靠视频监视器中的视觉提示,并在心理上与基础解剖结构相关联,通常使用在手术前获得的医学图像中的信息。 进一步的并发症是由于前列腺组织中的局部变形而在整个前列腺切除术过程中发生的,这是由于手术仪器与前列腺组织之间的相互作用而引起的。 随后,在过程中需要更新术前生成的解剖模型,以反映这种变形。 To address the clinical need for more accurate and reliable guidance, we propose to develop a navigation system that provides surgeons with an augmented reality (AR) view that fuses a pre-operative MRI model of the prostate, tumor and surrounding tissues with the da Vinci system laparoscopic video, while compensating for non-rigid prostate tissue deformation using intra-operative transrectal ultrasound (TRUS) imaging.
公共卫生相关性:前列腺癌是美国男性与癌症相关死亡的第二大主要原因。 据估计,将被诊断出217,730名男性,32,050名男性将在2010年死于前列腺癌。早期前列腺癌可能通过手术治愈,可以使用机器人助攻进行。 但是,当前的机器人技术并未为外科医生提供准确且可靠的视觉引导系统。 为了满足这一需求,我们建议开发增强现实显示,以改善前列腺和周围的关键解剖学机器人辅助前列腺手术的可视化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andinet Asmamaw Enquobahrie其他文献
Andinet Asmamaw Enquobahrie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andinet Asmamaw Enquobahrie', 18)}}的其他基金
Imaging biomarkers of severe respiratory infections in premature infants Phase II
早产儿严重呼吸道感染的影像生物标志物 II 期
- 批准号:
10491039 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Advanced virtual simulator for real-time ultrasound-guided renal biopsy training
用于实时超声引导肾活检训练的先进虚拟模拟器
- 批准号:
9408987 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Real-time Image Guidance for Improved Orthognathic Surgery
实时图像引导改善正颌手术
- 批准号:
8710950 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Image-guided planning system for skull correction in children with craniosynostos
颅缝早闭儿童颅骨矫正的图像引导规划系统
- 批准号:
8778815 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Calibrated Methods for Quantitative PET/CT Imaging Phase II
定量 PET/CT 成像第二阶段的校准方法
- 批准号:
8979242 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Approach-specific, multi-GPU, multi-tool, high-realism neurosurgery simulation
特定方法、多 GPU、多工具、高真实感神经外科模拟
- 批准号:
8037100 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
相似国自然基金
基于超图的装填与覆盖问题的多项式时间可解性及近似算法设计研究
- 批准号:12361065
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
烟雾环境下基于全向扫描毫米波雷达的无人车辆自主导航算法研究
- 批准号:52372415
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
面向大学生价值观引导的智能算法分发信息服务方法与机制研究
- 批准号:72304090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多目标优化的下肢外骨骼拟人步态建模与学习算法研究
- 批准号:62303092
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant