A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
基本信息
- 批准号:8188037
- 负责人:
- 金额:$ 48.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-01-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAnimalsAnteriorAreaBehaviorBehavioralBladder ControlBrainChronicCommunicationComplexContractsCouplingEffectivenessElectric StimulationElectrical Stimulation of the BrainElectrodesElectroencephalographyEngineeringFatigueForearmFreedomHandHand functionsHome environmentHourHumanImplantIndividualIntramuscularIsometric ExerciseLimb structureLocomotionLongitudinal StudiesMapsMeasuresMicroelectrodesModelingMonkeysMotorMovementMuscleNerveNerve BlockNervous system structureNeuronsParalysedPatientsPatternPerformancePeripheral Nerve StimulationPeripheral NervesPersonsPosturePrimatesProsthesisQuadriplegiaReportingResistanceRestRobotSignal TransductionSolutionsSpecificitySpinal cord injuryTechnologyTelemetryTestingTimeWheelchairsWorkWristbasebrain machine interfacecostdensitydesignexoskeletongraspimprovedkinematicsneuromuscular stimulatorneuroprosthesisprototyperelating to nervous systemresponserestorationsuccess
项目摘要
DESCRIPTION (provided by applicant): When asked, most spinal cords injured (SCI) patients suffering tetraplegia report that regaining the ability to use their hands would be more important than any other lost function. Functional Electrical Stimulation (FES) is a remarkable technology that can be used to cause the muscles of a paralyzed patient to contract. FES has been used to restore grasping to paralyzed patients. The primary limitations of FES for the restoration of dexterous hand movements are the inability to activate muscles with adequate force and specificity, and the inadequacy of the control signals that the paralyzed patient can generate. The Brain Machine Interface (BMI) may provide the necessary control signal. BMIs have reached the forefront of the neural engineering endeavor to treat patients suffering from paralysis. Yet despite remarkable BMI technology advances, virtually all current applications are limited to daily, several-hour sessions in a single, constrained setting. Current BMIs that restore movement do so only through a robot or limb exoskeleton, and none provides explicit control of force. These constraints will ultimately limit patients' ability to adapt fully to the technology, to use it readily at any time of the day or night, and to apply it to a broad range of behaviors. By coupling BMI technology to FES, we believe we can overcome these limitations. We have demonstrated a unique BMI using a peripheral nerve block to paralyze a monkey's hand as a model for SCI: We use information about intended muscle activity extracted from cortical recordings to produce an FES control signals that allows the monkeys to regain voluntary control of their wrist and hand. We propose to use this BMI-controlled FES model to restore round-the-clock hand use to monkey subjects for month-long periods of time. We will develop adaptive, state-dependent decoders designed to broaden the range of motor behaviors for which the FES BMI will be useful. We will improve both the quality of information we can obtain from the brain and the effectiveness with which we can activate muscles by using new types of electrodes for neural recording and peripheral nerve stimulation. Finally, we will develop a long-lasting peripheral nerve block to cause month-long paralysis. We will record telemetrically, to control a fully implanted neuromuscular stimulator that will allow us an unprecedented opportunity to study long-term adaptation to a BMI neuroprosthesis. We will study the behavioral improvement that results from this adaptation both in the monkey's natural home-cage behaviors and in the more constrained lab setting. We will study the interaction between the monkey's adaptation and the adaptive algorithms. This work will provide important basic information about the adaptive capability of the adult, mammalian brain, the extent to which BMI exposure can "rescue" cortex that undergoes maladaptive changes in response to paralysis, and the extent to which long- term practice improves BMI performance.
PUBLIC HEALTH RELEVANCE: When asked, most spinal cords injured patients suffering tetraplegia report that regaining the ability to use their hands would be more important than any other lost function. We propose to use information recorded directly from the brain to control electrical stimulation of hand muscles in order to restore voluntary hand movement to these patients. We will develop a prototype neuroprosthesis in monkey subjects that can be used 24 hours a day, in the monkeys' home cage as well as the lab setting.
描述(由申请人提供):当询问时,大多数受伤的脊髓受伤(SCI)患者患有四肢瘫痪的患者报告,恢复使用手的能力将比任何其他损失的功能都更为重要。 功能性电刺激(FES)是一项非凡的技术,可用于引起瘫痪患者的肌肉收缩。 FES已用于恢复瘫痪的患者的抓地力。 FES恢复灵活手动运动的主要局限性是无法以足够的力和特异性激活肌肉,并且瘫痪患者可以产生的控制信号不足。 大脑机界面(BMI)可以提供必要的控制信号。 BMI已达到神经工程努力的最前沿,以治疗瘫痪的患者。 尽管BMI技术取得了显着的进步,但实际上所有当前的应用程序都仅限于每天一次,在一个有限的设置中进行几个小时。 恢复运动的当前BMI仅通过机器人或肢体外骨骼进行,而没有一个可以明确控制力。 这些限制最终将限制患者完全适应该技术,在白天或黑夜的任何时间轻松使用它,并将其应用于广泛的行为。 通过将BMI技术与FES耦合,我们相信我们可以克服这些局限性。 我们已经使用外围神经块证明了独特的BMI,以使猴子的手作为SCI模型瘫痪:我们使用有关从皮质记录中提取的预期肌肉活动的信息来产生FES控制信号,使猴子可以自愿控制其腕部和手。 我们建议使用此BMI控制的FES模型来恢复为期一个月的猴子对象的全天候使用。 我们将开发自适应,依赖状态的解码器,旨在扩大FES BMI有用的运动行为范围。 我们将通过使用新型的电极进行神经记录和周围神经刺激来激活肌肉的有效性,从而提高我们可以从大脑中获得的信息质量。 最后,我们将发展一个持久的周围神经阻滞,以引起长达一个月的瘫痪。 我们将远程记录,以控制完全植入的神经肌肉刺激剂,这将使我们有前所未有的机会研究对BMI神经假体的长期适应性。 我们将研究由猴子自然笼子行为和更受限制的实验室环境中这种适应导致这种适应的行为改进。 我们将研究猴子的适应性与自适应算法之间的相互作用。 这项工作将提供有关成年人,哺乳动物大脑适应能力的重要基本信息,BMI暴露可以在多大程度上“挽救”皮质,从而在瘫痪中经历了不良适应性变化,以及长期实践改善了BMI的性能。
公共卫生相关性:当询问时,大多数脊髓损伤了患有四肢瘫痪的患者,称恢复使用双手的能力将比其他任何损失的功能都更为重要。 我们建议使用直接从大脑记录的信息来控制手动肌肉的电刺激,以恢复对这些患者的自愿移动。 我们将在猴子的家园和实验室设置中开发猴子受试者的原型神经假体,每天24小时使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Miller其他文献
Lee Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Miller', 18)}}的其他基金
Monkey-to-human transfer of trained iBCI decoders through nonlinear alignment of neural population dynamics
通过神经群体动态的非线性对齐,将经过训练的 iBCI 解码器从猴子转移到人类
- 批准号:
10791477 - 财政年份:2023
- 资助金额:
$ 48.74万 - 项目类别:
Robust modeling of within- and across-area population dynamics using recurrent neural networks
使用循环神经网络对区域内和跨区域人口动态进行稳健建模
- 批准号:
10263644 - 财政年份:2021
- 资助金额:
$ 48.74万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
7750515 - 财政年份:2006
- 资助金额:
$ 48.74万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
8291988 - 财政年份:2006
- 资助金额:
$ 48.74万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
8470719 - 财政年份:2006
- 资助金额:
$ 48.74万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
8849982 - 财政年份:2006
- 资助金额:
$ 48.74万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
7159350 - 财政年份:2006
- 资助金额:
$ 48.74万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
8661794 - 财政年份:2006
- 资助金额:
$ 48.74万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
7545455 - 财政年份:2006
- 资助金额:
$ 48.74万 - 项目类别:
Primate model of an intracortically controlled FES prost
皮质内控制的 FES 前列腺的灵长类动物模型
- 批准号:
7018987 - 财政年份:2006
- 资助金额:
$ 48.74万 - 项目类别:
相似国自然基金
加速器磁铁励磁电源扰动物理机制和观测抑制算法的研究
- 批准号:12305170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
- 批准号:32270602
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向移动物联网的高效数据查询机制与算法研究
- 批准号:62072402
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
考虑充电站选址和容量限制的电动物流车辆路径问题研究
- 批准号:71901177
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 48.74万 - 项目类别:
The Function of Sleep in Critical Period Plasticity
睡眠在可塑性关键期的作用
- 批准号:
10590177 - 财政年份:2023
- 资助金额:
$ 48.74万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 48.74万 - 项目类别:
Genetic and Transcriptomic Mechanisms of Progressive Ethanol Consumption in the Diversity Outbred Mouse
多样性远交小鼠渐进性乙醇消耗的遗传和转录组机制
- 批准号:
10751184 - 财政年份:2023
- 资助金额:
$ 48.74万 - 项目类别:
Non-invasive measurements of central blood pressures by RF sensors
通过射频传感器无创测量中心血压
- 批准号:
10649077 - 财政年份:2023
- 资助金额:
$ 48.74万 - 项目类别: