Direct Validated Improvement of Atmospheric Aerosol Property Prediction Using Laboratory Measurements

使用实验室测量直接验证改进大气气溶胶特性预测

基本信息

  • 批准号:
    NE/E018181/1
  • 负责人:
  • 金额:
    $ 44.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Aerosol particles influence climate directly by the scattering and absorption of solar radiation (direct effect) and indirectly through their role as cloud condensation nuclei (indirect effect), the latter effect comprising the largest uncertainty in climate change. Similarly, aerosol particles have a large impact on air quality. Unfortunately, there are many uncertainties which hinder our ability to model the behaviour of aerosol particles and thus asses the impacts they can have. These uncertainties are largely caused by the complexity of organic compounds, which represent a significant fraction of the chemical composition, and subsequent coupling with inorganic compounds. Whilst speciation is difficult we know certain compounds reside in this fraction yet detailed laboratory/theoretical studies focusing on specific parameters are lacking. Without an improved knowledge of basic data it is not possible to predict effects or simplify and / or parameterise aerosol properties with any degree of certainty. However, development of large scale models which aim to assess the effect of aerosols on climate, for example, rely heavily on such parameterisations. Thus, current unavailability of data propagates through to uncertainty in the aerosol impact. The most important uncertainties are in those parameters which dictate the aerosol water content and gas / aerosol partitioning. The former is necessary for predicting the direct and indirect climatic effect; the latter determines the evolving chemical composition of the aerosol and hence is necessary for predicting aerosol loading and composition which is also important for air quality considerations. To determine effects on water uptake below 100% relative humidity, investigations of aqueous thermodynamics are required through measurements / predictions of a quantity known as the water activity, which represents an 'effective' concentration. For predictions of water uptake above 100%RH, the solution surface tension is a crucial parameter for predictions of cloud activation. In describing the changing composition of aerosol particles, it is important to know how readily a compound will partition between the gas and particulate phase. Two parameters are important here. Solute activity coefficients, a measure of chemical interactions taking place in solution, describes how 'comfortable' a compound is in the aqueous aerosol, and is thus important for modelling condensation. Similarly, compounds with low vapour pressure have higher tendency to partition to aerosol particle and is thus an important parameter yet remains highly uncertain. This proposal seeks to conduct a range of detailed laboratory measurements, using well-established techniques, on key parameters which at the present time critically compromise the predictive capability of state of the art models of multicomponent aerosol behaviour. Improvement in the base models and predictive techniques from the laboratory programme will thus find its way directly to improved climate predictions and assesment of air quality.
气溶胶颗粒通过太阳辐射的散射和吸收直接影响气候(直接效应),并通过其作为云凝结核的作用间接影响气候(间接效应),后者影响气候变化的最大不确定性。同样,气溶胶颗粒对空气质量也有很大影响。不幸的是,有许多不确定性阻碍了我们对气溶胶颗粒行为进行建模并评估其影响的能力。这些不确定性很大程度上是由有机化合物的复杂性造成的,有机化合物占化学成分的很大一部分,以及随后与无机化合物的耦合。虽然形态形成很困难,但我们知道某些化合物存在于该部分中,但缺乏针对特定参数的详细实验室/理论研究。如果不加深对基本数据的了解,就不可能以任何程度的确定性来预测效果或简化和/或参数化气溶胶特性。然而,旨在评估气溶胶对气候影响的大型模型的开发在很大程度上依赖于此类参数化。因此,当前数据的不可用会导致气溶胶影响的不确定性。最重要的不确定性在于那些决定气溶胶含水量和气体/气溶胶分配的参数。前者对于预测直接和间接气候影响是必要的;后者决定了气溶胶不断变化的化学成分,因此对于预测气溶胶负荷和成分是必要的,这对于空气质量考虑也很重要。为了确定低于 100% 相对湿度对水吸收的影响,需要通过测量/预测水活度(代表“有效”浓度)的量来研究水热力学。对于 100%RH 以上的吸水量预测,溶液表面张力是预测云激活的关键参数。在描述气溶胶颗粒的成分变化时,了解化合物在气相和颗粒相之间分配的容易程度非常重要。这里有两个参数很重要。溶质活度系数是溶液中发生的化学相互作用的量度,描述了化合物在水性气溶胶中的“舒适度”,因此对于冷凝建模非常重要。类似地,低蒸气压的化合物更容易分离成气溶胶颗粒,因此是一个重要的参数,但仍然高度不确定。该提案旨在使用成熟的技术对关键参数进行一系列详细的实验室测量,这些参数目前严重损害了多组分气溶胶行为的最先进模型的预测能力。因此,实验室项目对基础模型和预测技术的改进将直接改善气候预测和空气质量评估。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties - Part 1: A systematic evaluation of some available estimation techniques
二次有机气溶胶成分分配对成分特性预测的敏感性 - 第 1 部分:对一些可用估计技术的系统评估
  • DOI:
    http://dx.10.5194/acp-10-10255-2010
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    McFiggans G
  • 通讯作者:
    McFiggans G
Surfactant effects in global simulations of cloud droplet activation
云滴激活全局模拟中的表面活性剂效应
  • DOI:
    http://dx.10.1029/2011gl050467
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Prisle N
  • 通讯作者:
    Prisle N
Solid state and sub-cooled liquid vapour pressures of substituted dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS) and Differential Scanning Calorimetry
使用克努森流出质谱 (KEMS) 和差示扫描量热法测定取代二羧酸的固态和过冷液体蒸气压
  • DOI:
    10.5194/acp-10-4879-2010
  • 发表时间:
    2010-05-26
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    A. M. Booth;M. Barley;D. Topping;G. Mcfiggans;A. Garforth;C. Percival
  • 通讯作者:
    C. Percival
The Kelvin versus the Raoult Term in the Köhler Equation
科勒方程中的开尔文项与拉乌尔项
Surface tension of mixed inorganic and dicarboxylic acid aqueous solutions at 298.15 K and their importance for cloud activation predictions.
298.15 K 下混合无机和二羧酸水溶液的表面张力及其对云激活预测的重要性。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Topping其他文献

An assessment of vapour pressure estimation methods
  • DOI:
    10.1039/c4cp00857j
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Simon O'Meara;Alastair Murray Booth;Mark Howard Barley;David Topping;Gordon McFiggans
  • 通讯作者:
    Gordon McFiggans
Comparative Analysis of Traditional and Advanced Clustering Techniques in Bioaerosol Data: Evaluating the Efficacy of K-Means, HCA, and GenieClust with and without Autoencoder Integration
  • DOI:
    10.3390/atmos14091416
  • 发表时间:
    2023-09-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Maxamillian A. N. Moss;Dagen D. Hughes;Ian Crawford;Martin W. Gallagher;Michael J. Flynn;David Topping
  • 通讯作者:
    David Topping
Residential greenspace and COVID-19 Severity: A cohort study of 313,657 individuals in Greater Manchester, United Kingdom
住宅绿地和 COVID-19 严重程度:一项针对英国大曼彻斯特 313,657 人的队列研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Samuel Hyman;Jiawei Zhang;Youn;Zorana Jovanovic Andersen;T. Cole;Yujing Li;Peter Møller;K. Daras;Richard Williams;Matthew L Thomas;S.M. Labib;David Topping
  • 通讯作者:
    David Topping
Development of lithium attachment mass spectrometry – knudsen effusion and chemical ionisation mass spectrometry (KEMS, CIMS)
  • DOI:
    10.1039/c7an01161j
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    A. Murray Booth;Thomas J. Bannan;Med Benyezzar;Asan Bacak;M. Rami Alfarra;David Topping;Carl J. Percival
  • 通讯作者:
    Carl J. Percival

David Topping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Topping', 18)}}的其他基金

Southern Ocean Clouds (SOC)
南大洋云 (SOC)
  • 批准号:
    NE/T006447/1
  • 财政年份:
    2020
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
International network for coordinating work on the physicochemical properties of molecules and mixtures important for atmospheric particulate matter
协调对大气颗粒物重要的分子和混合物的物理化学性质工作的国际网络
  • 批准号:
    NE/N013794/1
  • 财政年份:
    2016
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
Diffusion and Equilibration in Viscous Atmospheric Aerosol
粘性大气气溶胶的扩散和平衡
  • 批准号:
    NE/M003531/1
  • 财政年份:
    2015
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
Novel approaches for quantifying the highly uncertain thermodynamics and kinetics of atmospheric gas-to-particle conversion
量化大气气体到颗粒转化的高度不确定的热力学和动力学的新方法
  • 批准号:
    NE/J02175X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
Improvement of composition and property prediction techniques for for Secondary Organic Aerosol (SOA)
二次有机气溶胶(SOA)成分和性质预测技术的改进
  • 批准号:
    NE/J009202/1
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
Can emerging general purpose graphics processing unit (GPGPU) technology be used to mitigate computational burdens in environmental models?
新兴的通用图形处理单元(GPGPU)技术能否用于减轻环境模型中的计算负担?
  • 批准号:
    NE/J013471/1
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
Novel informatic software for automated aerosol component property predictions and ensemble predictions for direct model - measurement comparison
用于自动气溶胶成分特性预测和直接模型测量比较的整体预测的新型信息软件
  • 批准号:
    NE/H002588/1
  • 财政年份:
    2010
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant

相似国自然基金

乳腺癌前哨淋巴结转移状态的预测:前期已筛选的分子标志物的验证及术中快速诊断方法的建立
  • 批准号:
    81602322
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimization of in vivo validated ADCY10 inhibitors
体内验证的 ADCY10 抑制剂的优化
  • 批准号:
    10747156
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
Collaborative Research: Validated Complementarity Contact Conditions for Suction-Friction of Multiphasic Soft Materials
合作研究:验证多相软材料吸力摩擦的互补接触条件
  • 批准号:
    2224380
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
Assessing the Effectiveness of Common Health Messaging Tactics on Self-Reported and Validated Vaccine Uptake: A Multi-Method Approach.
评估常见健康信息策略对自我报告和验证疫苗接种的有效性:多种方法。
  • 批准号:
    2318512
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
Preparing Students for the Second Quantum Revolution Using Research-Validated Learning Tools
使用经过研究验证的学习工具让学生为第二次量子革命做好准备
  • 批准号:
    2309260
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了