International network for coordinating work on the physicochemical properties of molecules and mixtures important for atmospheric particulate matter

协调对大气颗粒物重要的分子和混合物的物理化学性质工作的国际网络

基本信息

  • 批准号:
    NE/N013794/1
  • 负责人:
  • 金额:
    $ 15.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Predicting the impact of atmospheric aerosols, through their evolving size and chemical composition, relies on using mechanistic models that attempt to predict the partitioning of potentially millions of such compounds between the gas phase and condensed phase. Uncertainties in the physicochemical properties of pure components and condensed phase mixtures affect our ability to accurately predict and resolve this partitioning. How do we tackle such uncertainties? In 2 ongoing NERC grants, a range of fundamental properties of pure components and mixtures (vapour pressures, viscosities and diffusion constants), are being measured with the objective of improving predictions for atmospheric functionalities. Given the urgency of making such measurements, complementary instruments and expertise exists across the EU and North America that is not available through existing NERC projects. Similarly, the laboratory facilities and expertise enabled by the referenced NERC projects are not accessible to such international programmes. Why is the lack of coherence in methodology and expertise a problem? Recent reviews by the international community highlight significant discrepancies between experimental methods. Despite this, there is no coordinated effort to reconcile these differences or to start compiling appropriate data, with appropriate screening, to improve the predictive techniques essential for improving atmospheric aerosol models. Current compiled data are extremely sparse. On top of this, there are no recommended standards to establish accepted criteria for future measurements or an agreed set of modelling tools to determine how accurate the data has to be to predict evolving aerosol properties. Ultimately, we do not know what level of accuracy in properties might be attainable and acceptable. This is a unique opportunity to address these issues internationally whilst directly benefiting existing and future NERC driven programmes. This IOF will catalyse exploitation of data from ongoing NERC grants, consolidating it into new databases built with measurements and expertise from partner organisation, adding value by expanding flexibility and accuracy of predictive techniques. We have identified 3 ongoing and 2 completed NERC grants as detailed in the case for support. Each partner will provide access to their existing measurement and modelling programmes, involvement in evaluation committee meetings, writing publications, hosting researchers to take part in intercomparisons (see letters of support) and supporting engagement with the wider community once the network matures. Whilst we identify activities to take place over a 2-year period, it is crucial to ensure project sustainability. As such, we will not only create new databanks and an agreed set of open source community modelling facilities, but an agreed set of standards for accepting future measurements will be established. We will engage with the global community through open workshops and meetings. The network comprises researchers from: The University of Manchester [lead], University of Bristol [UK-CoI], ETH [Switzerland], Aarhus University [Denmark], Stockholm University [Sweden], Lawrence Berkeley Laboratory [US], Pacific Northwest National Lab [US] and University of British Columbia [Canada].
通过其不断变化的尺寸和化学成分来预测大气气溶胶的影响,依赖于使用机械模型来预测可能数百万种此类化合物在气相和凝相之间的分配。纯组分和凝聚相混合物的物理化学性质的不确定性影响我们准确预测和解决这种分配的能力。我们如何应对这些不确定性?在 NERC 正在进行的 2 项拨款中,正在测量纯组分和混合物的一系列基本特性(蒸气压、粘度和扩散常数),目的是改进对大气功能的预测。鉴于进行此类测量的紧迫性,欧盟和北美存在现有的 NERC 项目无法提供的补充仪器和专业知识。同样,此类国际计划也无法获得所引用的 NERC 项目所提供的实验室设施和专业知识。为什么方法论和专业知识缺乏一致性是一个问题?国际社会最近的评论强调了实验方法之间的显着差异。尽管如此,还没有协调一致的努力来协调这些差异,或者开始通过适当的筛选来编制适当的数据,以改进对于改进大气气溶胶模型至关重要的预测技术。目前编译的数据极其稀疏。除此之外,没有推荐的标准来为未来的测量建立可接受的标准,也没有一套商定的建模工具来确定数据必须有多准确才能预测不断变化的气溶胶特性。最终,我们不知道可以达到什么级别的属性准确度并且可以接受。这是在国际上解决这些问题的独特机会,同时使现有和未来的 NERC 驱动计划直接受益。该 IOF 将促进对 NERC 持续资助数据的利用,将其整合到利用合作伙伴组织的测量和专业知识构建的新数据库中,通过扩大预测技术的灵活性和准确性来增加价值。我们已确定 3 项正在进行的 NERC 拨款和 2 项已完成的 NERC 拨款,详情请参阅支持案例。每个合作伙伴将提供对其现有测量和建模项目的访问权、参与评估委员会会议、撰写出版物、接待研究人员参加比对(参见支持信),并在网络成熟后支持与更广泛社区的接触。虽然我们确定了两年内开展的活动,但确保项目的可持续性至关重要。因此,我们不仅将创建新的数据库和一套商定的开源社区建模设施,还将建立一套商定的接受未来测量的标准。我们将通过公开研讨会和会议与国际社会互动。该网络由来自以下机构的研究人员组成:曼彻斯特大学[牵头]、布里斯托大学[英国-CoI]、联邦理工学院[瑞士]、奥胡斯大学[丹麦]、斯德哥尔摩大学[瑞典]、劳伦斯伯克利实验室[美国]、太平洋西北国家实验室实验室[美国]和不列颠哥伦比亚大学[加拿大]。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application
一种从FIAERO-HR-ToF-CIMS中提取校准波动率信息的方法及其实验应用
A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its application to chamber and field studies
从 FigAERO-HR-ToF-CIMS 中提取校准挥发性信息的方法及其在腔室和现场研究中的应用
  • DOI:
    http://dx.10.5194/amt-2018-255
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bannan T
  • 通讯作者:
    Bannan T
Measurements and Predictions of Binary Component Aerosol Particle Viscosity
二元气溶胶颗粒粘度的测量和预测
The effect of structure and isomerism on the vapor pressures of organic molecules and its potential atmospheric relevance
结构和异构现象对有机分子蒸气压的影响及其潜在的大气相关性
  • DOI:
    10.1080/02786826.2019.1628177
  • 发表时间:
    2019-06-24
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    C. Dang;T. Bannan;Petroc Shelley;M. Priestley;S. Worrall;J. Waters;H. Coe;C. Percival;D. Topping
  • 通讯作者:
    D. Topping
A reference data set for validating vapor pressure measurement techniques: Homologous series of polyethylene glycols
用于验证蒸气压测量技术的参考数据集:聚乙二醇同系物
  • DOI:
    http://dx.10.5194/amt-2017-224
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Krieger U
  • 通讯作者:
    Krieger U
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Topping其他文献

Comparative Analysis of Traditional and Advanced Clustering Techniques in Bioaerosol Data: Evaluating the Efficacy of K-Means, HCA, and GenieClust with and without Autoencoder Integration
  • DOI:
    10.3390/atmos14091416
  • 发表时间:
    2023-09-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Maxamillian A. N. Moss;Dagen D. Hughes;Ian Crawford;Martin W. Gallagher;Michael J. Flynn;David Topping
  • 通讯作者:
    David Topping
An assessment of vapour pressure estimation methods
  • DOI:
    10.1039/c4cp00857j
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Simon O'Meara;Alastair Murray Booth;Mark Howard Barley;David Topping;Gordon McFiggans
  • 通讯作者:
    Gordon McFiggans
Residential greenspace and COVID-19 Severity: A cohort study of 313,657 individuals in Greater Manchester, United Kingdom
住宅绿地和 COVID-19 严重程度:一项针对英国大曼彻斯特 313,657 人的队列研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Samuel Hyman;Jiawei Zhang;Youn;Zorana Jovanovic Andersen;T. Cole;Yujing Li;Peter Møller;K. Daras;Richard Williams;Matthew L Thomas;S.M. Labib;David Topping
  • 通讯作者:
    David Topping
Development of lithium attachment mass spectrometry – knudsen effusion and chemical ionisation mass spectrometry (KEMS, CIMS)
  • DOI:
    10.1039/c7an01161j
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    A. Murray Booth;Thomas J. Bannan;Med Benyezzar;Asan Bacak;M. Rami Alfarra;David Topping;Carl J. Percival
  • 通讯作者:
    Carl J. Percival

David Topping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Topping', 18)}}的其他基金

Southern Ocean Clouds (SOC)
南大洋云 (SOC)
  • 批准号:
    NE/T006447/1
  • 财政年份:
    2020
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Research Grant
Diffusion and Equilibration in Viscous Atmospheric Aerosol
粘性大气气溶胶的扩散和平衡
  • 批准号:
    NE/M003531/1
  • 财政年份:
    2015
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Research Grant
Novel approaches for quantifying the highly uncertain thermodynamics and kinetics of atmospheric gas-to-particle conversion
量化大气气体到颗粒转化的高度不确定的热力学和动力学的新方法
  • 批准号:
    NE/J02175X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Research Grant
Improvement of composition and property prediction techniques for for Secondary Organic Aerosol (SOA)
二次有机气溶胶(SOA)成分和性质预测技术的改进
  • 批准号:
    NE/J009202/1
  • 财政年份:
    2012
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Research Grant
Can emerging general purpose graphics processing unit (GPGPU) technology be used to mitigate computational burdens in environmental models?
新兴的通用图形处理单元(GPGPU)技术能否用于减轻环境模型中的计算负担?
  • 批准号:
    NE/J013471/1
  • 财政年份:
    2012
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Research Grant
Novel informatic software for automated aerosol component property predictions and ensemble predictions for direct model - measurement comparison
用于自动气溶胶成分特性预测和直接模型测量比较的整体预测的新型信息软件
  • 批准号:
    NE/H002588/1
  • 财政年份:
    2010
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Research Grant
Direct Validated Improvement of Atmospheric Aerosol Property Prediction Using Laboratory Measurements
使用实验室测量直接验证改进大气气溶胶特性预测
  • 批准号:
    NE/E018181/1
  • 财政年份:
    2007
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Research Grant

相似国自然基金

基于时空协调的环太湖地区生境网络优化研究
  • 批准号:
    42371276
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
分数阶忆阻神经网络的多吸引子协调切换与应用
  • 批准号:
    62376083
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
攻击环境下复杂信息物理网络弹性协调控制及其在微电网的应用
  • 批准号:
    62373003
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向常态拥堵的城市轨道交通网络客流协调控制与智慧诱导综合管控研究
  • 批准号:
    72361012
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目
基于深度神经网络的飞机大型复合材料构件装配变形智能预测及协调确定性分析
  • 批准号:
    52275493
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Regional Prospective Observational Research in Tuberculosis (RePORT) – Brazil Network
结核病区域前瞻性观察研究 (报告) – 巴西网络
  • 批准号:
    10535081
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
California NeuroAIDS Tissue Network
加州神经艾滋病组织网络
  • 批准号:
    10797350
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
ECHO Administrative Supplement - Neonatal Opioid Trials
ECHO 行政补充文件 - 新生儿阿片类药物试验
  • 批准号:
    10873579
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
Duke University Maternal-Fetal Medicine Units (MFMU) Network Clinical Center
杜克大学母胎医学中心 (MFMU) 网络临床中心
  • 批准号:
    10681052
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
1/2A Phase III Randomized Trial Comparing Unrelated Donor Bone Marrow Transplantation with Immune Suppressive Therapy for Newly Diagnosed Pediatric and Young Adult Patients with Severe Aplastic Anemia
1/2A III 期随机试验,比较无关供体骨髓移植与免疫抑制治疗对新诊断患有严重再生障碍性贫血的儿童和年轻成人患者的影响
  • 批准号:
    10370775
  • 财政年份:
    2022
  • 资助金额:
    $ 15.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了