Biologically-Mediated Weathering of minerals from Nanometre Scale to Environmental Systems.

从纳米尺度到环境系统的矿物生物介导风化。

基本信息

  • 批准号:
    NE/C004566/1
  • 负责人:
  • 金额:
    $ 53.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

In nature, a complex system of physical, chemical and biological processes weather the Earth's surface and transform rock into soil. Because global erosion loss is now much faster (100 times or more) than soil formation, largely as a result of unsustainable cultivation practices, soil has become a finite resource. Despite the importance of soil for sustenance of our planet and it 6 billion human inhabitants, our knowledge of weathering is limited. This is because various scientific approaches are not sufficiently integrated to tackle the many, complex interactions that occur. Therefore a multi-disciplinary approach is needed to study soil formation rates and processes. Soil fungi appear to use plant energy to mine nutrients from rock-but the mechanisms involved are uncertain. We want to know if biological weathering is driven by the flow of sugar produced by plant photosynthesis in return for nutrient elements (such as phosphorous, potassium) from the mineral particles. Nearly a third of the total chemical energy (sugar) produced by forest trees passes directly to symbiotic (mutually beneficial) root fungi. These fungi completely cover the tree roots and form extensive networks of living threads through soil. Virtually all nutrients taken up by the trees are absorbed through these fungi. This research programme will identify how fungal cells, and their secretions, interact with mineral surfaces and affect the rates of nutrient transfer from minerals to the organism. Making biological processes central to molecular-level understanding of how minerals dissolve is counter to existing theories. Investigating these fundamental molecular mechanisms in living systems allows us to create new concepts and mathematical models that can describe biological weathering and be used in computer simulations of soil weathering dynamics. We propose to study these biochemical interactions at three levels of observation: 1.At the molecular scale to understand interactions between living cells and minerals and to quantify the chemistry that breaks down the mineral structure, 2.At the soil grain scale to quantify the activity and spatial distribution of the fungi, roots and other organisms (e.g. bacteria) and their effects on the rates at which minerals are dissolved to release nutrients, and 3.At soil profile scale to test models for the spatial distribution of active fungi and carbon energy and their seasonal variability and impact on mineral dissolution rates. We will combine the expertise from many scientific fields. Biologists will work with the fungi and plant cultures in the presence and absence of minerals that are sources of nutrients, and measure carbon energy fluxes in the fungal networks. Surface chemists will use X-Ray and Infrared beams that interact with the cell and mineral surface, and are then measured using sophisticated sensors to provide information on the chemical bonds that can form. Physicists will measure the minuscule forces that operate between fungi cells and minerals surfaces, but determine if fungi actually adhere and form chemical bonds. Materials scientists will use highly specialised visualisation methods to observe the shape and composition of dissolving minerals at almost atomic scale. Geochemists will study how the minerals change over time and how much mineral is dissolved. The data and understanding that is obtained, by working from almost molecular to soil profile scale, will be used by numerical modellers to simulate the complex interactions between higher plants, fungi, minerals, soil organic matter and infiltrating water. A final step is to simulate soil profile weathering under a range of scenarios for changes in climatic conditions and soil management. The anticipated achievement is a much stronger fundamental understanding of soil formation, particularly the role of biological weathering, so that we can improve our management strategies for this important natural resource.
在自然界中,物理、化学和生物过程的复杂系统使地球表面风化并将岩石转化为土壤。由于全球侵蚀损失现在比土壤形成速度快得多(100倍或更多),这主要是由于不可持续的耕作方式造成的,因此土壤已成为一种有限资源。尽管土壤对于维持我们这个星球及其 60 亿人类居民的生存至关重要,但我们对风化作用的了解却很有限。这是因为各种科学方法没有充分整合,无法解决所发生的许多复杂的相互作用。因此,需要采用多学科方法来研究土壤形成速率和过程。土壤真菌似乎利用植物能量从岩石中开采养分,但所涉及的机制尚不确定。我们想知道生物风化是否是由植物光合作用产生的糖流驱动的,以换取矿物质颗粒中的营养元素(如磷、钾)。林木产生的总化学能(糖)的近三分之一直接传递给共生(互利)的根真菌。这些真菌完全覆盖了树根,并在土壤中形成了广泛的活线网络。事实上,树木吸收的所有养​​分都是通过这些真菌吸收的。该研究计划将确定真菌细胞及其分泌物如何与矿物质表面相互作用并影响营养物质从矿物质转移到生物体的速率。将生物过程作为分子水平理解矿物质如何溶解的核心与现有理论背道而驰。研究生命系统中的这些基本分子机制使我们能够创建新的概念和数学模型,可以描述生物风化并用于土壤风化动力学的计算机模拟。我们建议在三个观察水平上研究这些生化相互作用:1.在分子尺度上了解活细胞和矿物质之间的相互作用并量化分解矿物结构的化学反应,2.在土壤颗粒尺度上量化活性真菌、根系和其他生物体(例如细菌)的空间分布及其对矿物质溶解释放养分速率的影响,以及 3. 在土壤剖面尺度上测试活性真菌和碳能的空间分布模型及其季节性变化和影响关于矿物溶解速率。我们将结合许多科学领域的专业知识。生物学家将在存在或不存在作为营养来源的矿物质的情况下研究真菌和植物培养物,并测量真菌网络中的碳能量通量。表面化学家将使用 X 射线和红外光束与细胞和矿物表面相互作用,然后使用复杂的传感器进行测量,以提供有关可形成的化学键的信息。物理学家将测量真菌细胞和矿物表面之间作用的微小力,并确定真菌是否确实粘附并形成化学键。材料科学家将使用高度专业化的可视化方法来观察几乎原子尺度的溶解矿物的形状和成分。地球化学家将研究矿物质如何随时间变化以及溶解了多少矿物质。通过从几乎分子到土壤剖面尺度的工作获得的数据和理解将被数值建模者用来模拟高等植物、真菌、矿物质、土壤有机质和渗透水之间的复杂相互作用。最后一步是模拟一系列气候条件和土壤管理变化情景下的土壤剖面风化。预期的成就是对土壤形成,特别是生物风化的作用有更深入的基本了解,以便我们能够改进对这一重要自然资源的管理策略。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface
树-菌根共生加速矿物风化:菌丝-矿物界面纳米级元素通量的证据
  • DOI:
    http://dx.10.1016/j.gca.2011.08.041
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Bonneville S
  • 通讯作者:
    Bonneville S
High resolution functional group mapping of fungi on a mineral surface
矿物表面真菌的高分辨率官能团图谱
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.W. Bray (Author)
  • 通讯作者:
    A.W. Bray (Author)
Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO 2 and climate change
基于过程的硅酸盐矿物风化对大气 CO 2 增加和气候变化响应的模拟
  • DOI:
    http://dx.10.1029/2008gb003243
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Banwart S
  • 通讯作者:
    Banwart S
Structural Fe(II) Oxidation in Biotite by an Ectomycorrhizal Fungi Drives Mechanical Forcing.
外生菌根真菌对黑云母中的结构 Fe(II) 氧化驱动机械力。
  • DOI:
    10.1021/acs.est.5b06178
  • 发表时间:
    2016-05-12
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    S. Bonneville;A. Bray;L. Benning
  • 通讯作者:
    L. Benning
Structural Fe(II) Oxidation in Biotite by an Ectomycorrhizal Fungi Drives Mechanical Forcing.
外生菌根真菌对黑云母中的结构 Fe(II) 氧化驱动机械力。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Banwart其他文献

Will the circle be unbroken? The climate mitigation and sustainable development given by a circular economy of carbon, nitrogen, phosphorus and water
  • DOI:
    10.1039/d2su00121g
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick McKenna;Fiona Zakaria;Jeremy Guest;Barbara Evans;Steven Banwart
  • 通讯作者:
    Steven Banwart

Steven Banwart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Banwart', 18)}}的其他基金

Assessing Agroecology Benefits and Novel Chemical and AMR Risks in Adopting a Sanitation-Agriculture Circular Economy
评估采用卫生农业循环经济的农业生态效益以及新型化学品和抗生素耐药性风险
  • 批准号:
    BB/X005879/1
  • 财政年份:
    2022
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
MIDST-CZ: Maximising Impact by Decision Support Tools for sustainable soil and water through UK-China Critical Zone science
MIDST-CZ:通过中英关键区域科学,最大限度地发挥可持续土壤和水决策支持工具的影响
  • 批准号:
    NE/S009124/1
  • 财政年份:
    2019
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
SoS RARE: Multidisciplinary research towards a secure and environmentally sustainable supply of critical rare earth elements (Nd and HREE)
SoS RARE:多学科研究,致力于关键稀土元素(Nd 和 HREE)的安全和环境可持续供应
  • 批准号:
    NE/M011232/2
  • 财政年份:
    2016
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
Using Critical Zone Science to Enhance Soil Fertility and Improve Ecosystem Services for Peri-Urban Agriculture in China
利用关键区域科学提高土壤肥力并改善中国城郊农业的生态系统服务
  • 批准号:
    NE/N007514/1
  • 财政年份:
    2016
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
Using Critical Zone Science to Enhance Soil Fertility and Improve Ecosystem Services for Peri-Urban Agriculture in China
利用关键区域科学提高土壤肥力并改善中国城郊农业的生态系统服务
  • 批准号:
    NE/N007514/2
  • 财政年份:
    2016
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
SoS RARE: Multidisciplinary research towards a secure and environmentally sustainable supply of critical rare earth elements (Nd and HREE)
SoS RARE:多学科研究,致力于关键稀土元素(Nd 和 HREE)的安全和环境可持续供应
  • 批准号:
    NE/M011232/1
  • 财政年份:
    2015
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
BioEngineering from first principles.
生物工程从第一原理开始。
  • 批准号:
    EP/I016589/1
  • 财政年份:
    2011
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
GOING UNDERGROUND: HUMAN PATHOGENS IN THE SOIL-WATER ENVIRONMENT
深入地下:土壤-水环境中的人类病原体
  • 批准号:
    NE/E008992/1
  • 财政年份:
    2007
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
GOING UNDERGROUND: HUMAN PATHOGENS IN THE SOIL-WATER ENVIRONMENT
深入地下:土壤-水环境中的人类病原体
  • 批准号:
    NE/E008143/1
  • 财政年份:
    2007
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
Biologically-Mediated Weathering of minerals from Nanometre Scale to Environmental Systems.
从纳米尺度到环境系统的矿物生物介导风化。
  • 批准号:
    NE/C521044/1
  • 财政年份:
    2006
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant

相似国自然基金

靶向VEGFR2增强放疗-免疫检查点抑制剂联合介导的远隔效应抑制肿瘤进展的机制研究
  • 批准号:
    82360580
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
腺相关病毒载体介导的circ_12952基因治疗通过激活结直肠癌抗肿瘤免疫增强PD-1抗体疗效的机制研究及临床探索
  • 批准号:
    82303073
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
  • 批准号:
    82303993
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
β细胞IRS1介导GATA4/Reg通路调控妊娠期糖尿病的作用及机制研究
  • 批准号:
    82301915
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
酸枣仁皂苷A对三叉神经痛中P2X7受体介导的NLRP3/Caspase-1通路的作用研究
  • 批准号:
    82360199
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Standard Grant
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
  • 批准号:
    502577
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
Electrospun mucoadhesive matrices for polymersome-mediated mRNA vaccine delivery
用于聚合物囊泡介导的 mRNA 疫苗递送的电纺粘膜粘附基质
  • 批准号:
    BB/Y007514/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Research Grant
Investigating the role of prion-mediated epigenetic regulation in yeast using an integrative approach of multi-omics
使用多组学综合方法研究酵母中朊病毒介导的表观遗传调控的作用
  • 批准号:
    2332782
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Standard Grant
EAGER: Airborne Investigation of the Chlorine Mediated Mineral Dust Sea Spray Aerosol (MDSA) Mechanism in the Western Atlantic
EAGER:西大西洋氯介导的矿物尘海喷雾气溶胶 (MDSA) 机制的机载调查
  • 批准号:
    2411615
  • 财政年份:
    2024
  • 资助金额:
    $ 53.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了