I-Corps: Quantum magnetometer
I-Corps:量子磁力计
基本信息
- 批准号:2342756
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-15 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of low-cost and ultra-sensitive magnetic field sensors that can operate under ambient conditions. The current solutions require cryogenic temperatures, which increases both the cost and size of the sensor. The market for magnetic field sensors based on solid-state defects currently is valued at $300M, representing only 20% of the broader market of quantum sensing, magnetometry, and imaging, which is valued at $1.5B. The proposed sensor technology may be used in medical applications where they may substantially reduce the cost of diagnostic tests; in industrial settings where they may enhance the precision of machinery; and in scientific research where they may expedite breakthroughs in high-tech discoveries.This I-Corps project is based on the development of ultra-sensitive magnetic field sensors with solid-state defects. The proposed diamond-based quantum magnetometry technology is capable of operating in ambient conditions and has the potential to surpass the current limits of magnetic field sensitivity. It leverages principles from quantum physics to utilize atomic-size defects in crystals for magnetic field sensing. The advantage of this system over the competing quantum sensors is in its capability to operate at room temperature and not requiring the costly process of trapping atoms or molecules. The proposed technology platform is based on nitrogen-vacancy (NV) center in diamond. These defects in diamond are naturally protected from the environment and can operate in ambient conditions. The proposed technology introduces a fundamentally new readout technique for utilizing crystal defects including NV centers. This technique removes the main source of noise that limits the performance of these sensors. Moreover, these defects are capable of atomic scale measurements, which has opened new avenues in materials science research. This project is based on extensive experimental research and may provide a new generation of ultra-sensitive sensors that enable novel discoveries and lowers the cost of ultra-sensitive magnetic field sensors for medical, industrial, and scientific applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目更广泛的影响/商业潜力是开发可在环境条件下运行的低成本、超灵敏磁场传感器。当前的解决方案需要低温,这增加了传感器的成本和尺寸。基于固态缺陷的磁场传感器市场目前估值为 3 亿美元,仅占量子传感、磁力测量和成像更广泛市场(估值为 1.5B)的 20%。 所提出的传感器技术可用于医疗应用,可大大降低诊断测试的成本;在工业环境中,它们可以提高机械的精度;在科学研究中,它们可能会加速高科技发现的突破。I-Corps 项目基于具有固态缺陷的超灵敏磁场传感器的开发。所提出的基于金刚石的量子磁力测量技术能够在环境条件下运行,并且有可能超越当前磁场灵敏度的极限。它利用量子物理学原理,利用晶体中的原子尺寸缺陷进行磁场传感。与竞争性量子传感器相比,该系统的优势在于它能够在室温下运行,并且不需要昂贵的捕获原子或分子的过程。所提出的技术平台基于金刚石中的氮空位(NV)中心。 金刚石中的这些缺陷天然地不受环境影响,并且可以在环境条件下运行。所提出的技术引入了一种全新的读出技术,用于利用包括 NV 中心在内的晶体缺陷。该技术消除了限制这些传感器性能的主要噪声源。 此外,这些缺陷能够进行原子尺度的测量,这为材料科学研究开辟了新的途径。该项目基于广泛的实验研究,可能会提供新一代超灵敏传感器,从而实现新的发现并降低用于医疗、工业和科学应用的超灵敏磁场传感器的成本。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zubin Jacob其他文献
What are the quantum commutation relations for the total angular momentum of light?
光的总角动量的量子交换关系是什么?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Pronoy Das;Li;Zubin Jacob - 通讯作者:
Zubin Jacob
Computational Kerr ellipsometry: Quantifying broadband optical nonreciprocity of magneto-optic materials
计算克尔椭圆光度术:量化磁光材料的宽带光学非互易性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
Vishal Choudhury;C. Khandekar;Ashwin K. Boddeti;Ali Jishi;Mustafa Erkovan;Tyler Sentz;Farid Kalhor;S. Cardoso;V. Supradeepa;Zubin Jacob - 通讯作者:
Zubin Jacob
Simulation of Metallic Quantum Gate Structures with Advanced Volume Integral Equation Solver
使用先进的体积积分方程求解器模拟金属量子门结构
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yifan Wang;Wenbo Sun;Zubin Jacob;D. Jiao - 通讯作者:
D. Jiao
Reducing Effective System Dimensionality with Long-Range Collective Dipole-Dipole Interactions.
通过长程集体偶极子-偶极子相互作用降低有效系统维数。
- DOI:
10.1103/physrevlett.132.173803 - 发表时间:
2023 - 期刊:
- 影响因子:8.6
- 作者:
Ashwin K. Boddeti;Yi Wang;Xitlali G. Juarez;A. Boltasseva;Teri W. Odom;V. Shalaev;H. Alaeian;Zubin Jacob - 通讯作者:
Zubin Jacob
Nano-Electromagnetic Super-dephasing in Collective Atom-Atom Interactions
集体原子-原子相互作用中的纳米电磁超相移
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Wenbo Sun;A. E. R. L'opez;Zubin Jacob - 通讯作者:
Zubin Jacob
Zubin Jacob的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zubin Jacob', 18)}}的其他基金
CAREER: Controlling Single Photon Interactions with K-Surface Engineered Nanomaterials
职业:控制单光子与 K 表面工程纳米材料的相互作用
- 批准号:
1654676 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似国自然基金
多体系统量子态弛豫过程的研究
- 批准号:12374461
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
无经典信道高效连续变量量子密钥分发技术研究
- 批准号:62371060
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
可控掺杂小带隙硫化铅量子点薄膜及同质结光电二极管研究
- 批准号:62304085
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
量子点用于钙钛矿薄膜缺陷管理及太阳电池界面调控
- 批准号:22308112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
对称性保护的新奇量子态研究
- 批准号:12305033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Measurement with a deployable quantum magnetometer
使用可部署的量子磁力计进行测量
- 批准号:
2744832 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Studentship
Development of low-cost optically pumped magnetometer system for fetal applications
开发用于胎儿应用的低成本光泵磁力计系统
- 批准号:
10589808 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Development of low-cost optically pumped magnetometer system for fetal applications
开发用于胎儿应用的低成本光泵磁力计系统
- 批准号:
10467588 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Nanoparticle-based optical magnetometer for room-temperature magnetoencephalography
用于室温脑磁图的纳米颗粒光学磁力计
- 批准号:
10449972 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
MAG-V : Enabling Volume Quantum Magnetometer Applications through Component Optimisation & System Miniaturisation
MAG-V:通过组件优化实现体积量子磁力计应用
- 批准号:
106172 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D