Inorganic Nanoparticles in Non-Polymeric Organic Coating for Biomedical Applicati
用于生物医学应用的非聚合有机涂层中的无机纳米颗粒
基本信息
- 批准号:7895786
- 负责人:
- 金额:$ 11.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-17 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAddressAffectAirAluminum OxideAreaBindingBiocompatibleBiologicalBiomedical EngineeringCarboxylic AcidsCellsChemistryCollaborationsColloidsComplementComplexDataDevelopmentDiffusionDrug Delivery SystemsEpoxy CompoundsEthylene OxideFeverGoalsGrantHydrolysisHydroxyl RadicalIn VitroIntentionLeftLigandsLiquid substanceMagnetismMarketingMeasurementMeasuresMedicalMetalsMethodsMineralsModelingMolecularOrganic SynthesisOxidesOxygenPaperPenetrationPerformancePharmacologic SubstancePharmacy facilityPolymersPowder dose formPredispositionPreparationPrincipal InvestigatorPropertyPublicationsReactionResearchScienceSolutionsSpectrometryStructureSurfaceTechniquesThickTissuesTrainingWorkX ray diffraction analysisX-Ray Diffractionadductaqueousbasebiocompatible polymercancer therapycollegefunctional groupin vitro testinginterestiron oxidelight scatteringmagnetic fieldmagnetite ferrosoferric oxidemetal oxidenanocompositenanocrystalnanoparticlenovelnucleophilic additionoxidationparticleprogramspublic health relevanceresponsezeta potential
项目摘要
DESCRIPTION (provided by applicant): The performance of magnetic nanoparticles as drug delivery, hyperthermia and cell tracking agents depends on their magnetic susceptibility, mobility, and diffusion properties in biological media. Most of the functional nanoparticles on the market today utilize biocompatible polymers which wrap these particles and therefore stabilize their colloids. Since polymers attach to the particle surface randomly, they must be large in order to provide a sufficient stabilizing effect. As a consequence, their diamagnetic contribution to the core-shell nanocomposite obscures its desired response to an external magnetic field. In addition, polymeric shells make the nanocomposite large and thus limit its mobility and penetration properties. The proposed project addresses this problem. The ultimate goal of this project is to develop new synthetic methods for the preparation of non-polymeric- ligand-capped inorganic nanoparticles with superior properties for biomedical applications. The following plan is being proposed to achieve this goal. We will first study the coordination of polydentate 1-hydroxycarboxylic acids to the surfaces of metal oxide nanocrystals in order to gain an understanding of how the structure of the inorganic - organic interface affects the colloidal properties of the nanoparticles. We will use acids whose molecular geometry will likely promote their coordination in a bridging mode, while leaving one or more active groups unbound. Then in order to cover the nanoparticles with a protective layer of a biocompatible organic shell, we plan to perform organic synthesis directly on the surface of the acid-capped nanoparticles using the acid's unbound functional groups. Colloidal alumina will be used along with superparamagnetic iron oxides for the development of organic ligand synthesis which will decrease the possibility of undesired oxidation and also allow the use of NMR for the product analysis. The hypothesis is that organic synthesis techniques developed for alumina will work for iron oxides as well. Alternatively, the alumina-organic nanocomposites will be decomposed using a strong acid or base, and the isolated free ligands will be reacted with the ligand-free iron oxide nanoparticles to assemble the magnetic inorganic core-organic shell nanocomposites. A systematic study of the colloidal stability in aqueous solutions and the magnetic susceptibility measurements will be conducted for the assembled nanocomposites. Dynamic Light Scattering and electrophoretic methods will be used for measuring the hydrodynamic sizes and zeta potentials. The nanocomposites forming the most stable colloids and having the strongest magnetic response will be sent for in vitro testing.
PUBLIC HEALTH RELEVANCE: The project aims at the development of novel magnetic delivery agents with superior properties for the targeted treatment of cancer-affected tissues. To assure stability and compatibility with biological fluids, the surface of these polymer-free carriers will be chemically modified by organic synthesis directly on the nanoparticle's surface. This organic synthesis will be developed in the project.
描述(由申请人提供):磁性纳米颗粒作为药物输送,热疗和细胞跟踪剂的性能取决于其磁敏感性,迁移率和生物学介质中的扩散性能。当今市场上的大多数功能性纳米颗粒都利用包裹这些颗粒并因此稳定其胶体的生物相容性聚合物。由于聚合物随机附着在颗粒表面上,因此必须大大才能提供足够的稳定效果。结果,它们对核心壳纳米复合材料的磁性贡献掩盖了其对外部磁场的所需响应。另外,聚合物壳使纳米复合材料大,从而限制了其迁移率和穿透性。拟议的项目解决了这个问题。该项目的最终目的是开发新的合成方法,用于制备具有生物医学应用具有出色特性的非聚合物封闭的无机纳米颗粒。正在提出以下计划来实现这一目标。我们将首先研究聚二酸1-羟基羧酸与金属氧化物纳米晶体表面的配位,以便了解无机有机界面的结构如何影响纳米颗粒的胶体特性。我们将使用其分子几何形状可能会在桥接模式下促进其协调的酸,同时使一个或多个活跃组未结合。然后,为了用生物相容性有机壳的保护层覆盖纳米颗粒,我们计划使用酸的未结合官能团在酸封闭的纳米颗粒表面直接执行有机合成。胶体氧化铝将与超顺磁铁氧化物一起用于开发有机配体合成,这将减少不希望的氧化的可能性,还允许使用NMR进行产品分析。假设是,为氧化铝开发的有机合成技术也将用于铁氧化铁。或者,将使用强酸或碱分解氧化铝 - 有机纳米复合材料,并且分离的游离配体将与无配体氧化铁纳米颗粒反应,以组装磁性无机核心有机壳壳纳米复合材料。将针对组装的纳米复合材料进行水溶液中胶体稳定性和磁化率测量的系统研究。动态光散射和电泳方法将用于测量流体动力大小和ZETA电位。形成最稳定的胶体并具有最强磁反应的纳米复合材料将用于体外测试。
公共卫生相关性:该项目旨在开发具有较高特性的新型磁性输送剂,以靶向受癌症影响组织的靶向治疗。为了确保与生物流体的稳定性和兼容性,这些无聚合物载体的表面将通过有机合成直接在纳米颗粒表面上进行化学修饰。该有机合成将在项目中开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Galina Z. Goloverda其他文献
Galina Z. Goloverda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Galina Z. Goloverda', 18)}}的其他基金
Inorganic Nanoparticles in Non-Polymeric Organic Coating for Biomedical Applicati
用于生物医学应用的非聚合有机涂层中的无机纳米颗粒
- 批准号:
8081041 - 财政年份:2009
- 资助金额:
$ 11.22万 - 项目类别:
Inorganic Nanoparticles in Non-Polymeric Organic Coating for Biomedical Applicati
用于生物医学应用的非聚合有机涂层中的无机纳米颗粒
- 批准号:
7691516 - 财政年份:2009
- 资助金额:
$ 11.22万 - 项目类别:
Inorganic Nanoparticles in Non-Polymeric Organic Coating for Biomedical Applicati
用于生物医学应用的非聚合有机涂层中的无机纳米颗粒
- 批准号:
8299494 - 财政年份:2009
- 资助金额:
$ 11.22万 - 项目类别:
Novel Magnetic Nanoparticles for Biomedical Application
用于生物医学应用的新型磁性纳米粒子
- 批准号:
6727050 - 财政年份:2004
- 资助金额:
$ 11.22万 - 项目类别:
Novel Magnetic Nanoparticles for Biomedical Application
用于生物医学应用的新型磁性纳米粒子
- 批准号:
7222685 - 财政年份:
- 资助金额:
$ 11.22万 - 项目类别:
Novel Magnetic Nanoparticles for Biomedical Application
用于生物医学应用的新型磁性纳米粒子
- 批准号:
7063032 - 财政年份:
- 资助金额:
$ 11.22万 - 项目类别:
Novel Magnetic Nanoparticles for Biomedical Application
用于生物医学应用的新型磁性纳米粒子
- 批准号:
7405334 - 财政年份:
- 资助金额:
$ 11.22万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 11.22万 - 项目类别:
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 11.22万 - 项目类别:
Isoform- and Sex-Specific Functions of CGRP in Gastrointestinal Motility
CGRP 在胃肠动力中的亚型和性别特异性功能
- 批准号:
10635765 - 财政年份:2023
- 资助金额:
$ 11.22万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 11.22万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 11.22万 - 项目类别: