Neuroanatomical Correlated of Cognitive Control

认知控制的神经解剖学相关性

基本信息

  • 批准号:
    7813297
  • 负责人:
  • 金额:
    $ 11.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-12-01 至 2014-11-30
  • 项目状态:
    已结题

项目摘要

The human brain is roughly three times larger than it should be for a species of our body weight. In addition, the evolution of the brain has not been uniform, with distinct cortical and sub-cortical regions being selected for in different species among mammals, and specifically within primates (T. W. Deacon, 1997; Finlay & Darlington, 1995; J. K. Rilling, 2006; Semendeferi & Damasio, 2000). For example, in primates, some have suggested there has been differential expansion of the frontal and temporal lobes relative to the other lobes and that these changes might reflect specific selection for cortical development in brain regions associated with complex cognition, including language (T. Deacon, 2004; J. K. Rilling & Seligman, 2002; Semendeferi, Armstrong, Schleicher, Zilles, & Van Hoesen, 2001; Semendeferi, Lu, Schenker, & Damasio, 2002). One of the main challenges in the field of neuroscience is to understand the development and evolution of the brain in relation to emergent behavioral and cognitive processes that define the human species relative to other primates. Related to this challenge is the quest to understand the role of genetic and non-genetic factors on the development and evolution of the brain in relation to specific behaviors of interest. The main focus of the proposed studies is to begin to address the relationship between the evolution of executive functions, broadly defined, in primates in the context of individual and phylogenetic changes in the brain, notably the prefrontal cortex and associated striatal and limbic system structures. The term "executive function" or "cognitive control" in human cognitive neuroscience reflects the ability to exert meta-control or decision making processes over a number of motivational, emotional and attentional systems. The notion of cognitive control implies that there are top-down systems that exert inhibitory control over more biologically driven motivational or emotional states. This top-down system underlies the ability to shut down or inhibit impulsive behaviors or provide for the ability to foresee reward in the future at the expense of immediate gains (sometimes referred to as delayed gratification) (E. K. Miller, 2000; E. K Miller, 2000), abilities some have suggested are highly advanced and possibly uniquely human (Roberts, 2002). One heuristic conceptualization of this system has been referred to as the "hot-cool" system of delayed gratification (Metcalfe & Mischel, 1999). In this model, there is the hot "emotional go system" and the cool "know" system characterized as emotionally neutral, contemplative and the seat of self regulation and selfcontrol. Accordingly, during hominin (and possibly hominoid) evolution, presumably there has been greater selection for cognitive control (the cool system) over the "hot" emotional, impulsive system. From a motivational and emotional standpoint, many have suggested that the prefrontal cortex, anterior cingulate and regions within the striatum (notably the caudate) play very important roles in the ability to exert self-control, or to suppress specific kinds of behavioral processes in the presence of pre-potent stimuli that exert strong stimulus control over the subjects' behavior. For example, in humans, there are significant developmental changes in delayed gratification that correspond to increasing maturation and connectivity in the prefrontal cortex, parietal lobe and striatum (Bunge & Wright, 2007; Casey, Getz, & Galvan, 2008). Clinical studies further support the role of prefrontal cortex in cognitive or executive control. Individuals with lesions in prefrontal cortex and associated limbic system and striatum structures have been described as stimulus bound; that is, their behavior is captured by immediate prepotent stimuli that reflexively elicit strong reactions and they are unable to override these impulsive behaviors and engage in behaviors that result in reward at later points in time (Bechara, Tranel, & Damasio, 2000; E. K Miller, 2000; Sax et al., 1999). Arguably, one of the most pronounced clinical manifestations of disrupted executive functions are patients diagnosed as attention-deficit hyperactivity disorder (ADHD). Though executive functions are broadly defined in the human neuropsychological literature, many have argued that the central behavioral problem of most ADHD individuals is a breakdown in behavioral inhibition (Baird, Stevenson, & Williams, 2000; R. A. Barkley, 1997; R. A. Barkley, 2001) that expresses itself behaviorally as poor self-control and impulsivity. There is considerable overlap in the neural correlates of executive function and in the comparison of ADHD and non-ADHD adult and child populations including prefrontal cortex, anterior cingulate and region of the striatum (caudate and putamen). For instance, meta-analyses of studies of structural brain differences between ADHD individuals and controls have revealed significant differences in the volume and lateralization of the prefrontal cortex, cerebellum, splenium of the corpus callosum and caudate (Casey et al., 1997; Mostofsky, Cooper, Kates, Denckia, & Kaufmann, 2002; Valera, Faraone, Murray, & Seidman, 2007). It has been shown that damage to the right frontal cortex is associated with deficits in working memory as well as response inhibition, a pattern of results similarly observed in adults with ADHD (Clark et al., 2007). It is of note that ADHD is significantly more prevalent in males than females and a recent review of the studies on delay of gratification showed that women were significantly better than men (Silverman, 2003).
人类的大脑大约比我们体重的物种应有的大脑大三倍。在 此外,大脑的进化并不统一,不同物种的哺乳动物,特别是灵长类动物,选择了不同的皮质和皮质下区域(T. W. Deacon,1997;Finlay & Darlington,1995;J. K. Rilling,2006;塞门德费里和达马西奥,2000)。例如,在灵长类动物中,一些人认为,相对于其他叶,额叶和颞叶的扩张存在差异,这些变化可能反映了与复杂认知(包括语言)相关的大脑区域皮质发育的特定选择(T. Deacon) ,2004 年 J.K.Rilling 和 Seligman,2002 年;Semendeferi、Armstrong、Schleicher、Zilles 和 Van Hoesen,2001 年; Semendeferi、Lu、Schenker 和 Damasio,2002)。 神经科学领域的主要挑战之一是了解神经科学的发展和 大脑的进化与新兴的行为和认知过程有关,这些过程定义了人类相对于其他灵长类动物的物种。与这一挑战相关的是寻求了解遗传和非遗传因素对与特定感兴趣行为相关的大脑发育和进化的作用。拟议研究的主要重点是开始解决灵长类动物执行功能进化之间的关系,广义上是在大脑个体和系统发育变化的背景下,特别是前额皮质和相关的纹状体和边缘系统结构。人类认知神经科学中的术语“执行功能”或“认知控制”反映了对许多动机、情感和注意力系统施加元控制或决策过程的能力。认知控制的概念意味着存在自上而下的系统,可以对更多生物驱动的动机或情绪状态施加抑制控制。这种自上而下的系统是关闭或抑制冲动行为的能力的基础,或者提供以牺牲眼前收益为代价预见未来奖励的能力(有时称为延迟满足)(E.K. Miller,2000;E.K Miller) ,2000),一些人认为这些能力是非常先进的,并且可能是人类独有的(Roberts,2002)。 该系统的一种启发式概念被称为延迟满足的“热-冷”系统(Metcalfe & Mischel,1999)。在这个模型中,有热的“情绪去系统”和冷的“知道”系统,其特点是情绪中立、沉思,是自我调节和自我控制的所在地。 因此,在古人类(也可能是类人猿)的进化过程中,可能出现了更大的 选择认知控制(冷系统)而不是“热”情绪、冲动系统。 从动机和情感的角度来看,许多人认为前额皮质、前扣带皮层和纹状体内的区域(特别是尾状核)在发挥自我控制能力或抑制特定类型的行为过程的能力中发挥着非常重要的作用。存在对受试者行为施加强烈刺激控制的预强刺激。例如,在人类中,延迟满足存在显着的发育变化,这与前额皮质、顶叶和纹状体的成熟度和连通性的增强相对应(Bunge & Wright, 2007;Casey, Getz, & Galvan, 2008)。 临床研究进一步支持前额叶皮层在认知或执行控制中的作用。前额皮质及相关边缘系统和纹状体结构有损伤的个体被描述为刺激束缚型;也就是说,他们的行为被立即的优势刺激所捕获,这些刺激会反射性地引起强烈反应,并且他们无法克服这些冲动行为并参与在以后的时间点带来奖励的行为(Bechara,Tranel,&Damasio,2000;E. K 米勒,2000;萨克斯等人,1999)。 可以说,执行功能紊乱最明显的临床表现之一是 被诊断为注意力缺陷多动障碍(ADHD)的患者。虽然执行职能是 根据人类神经心理学文献中的广泛定义,许多人认为大多数 ADHD 个体的核心行为问题是行为抑制的崩溃(Baird, Stevenson, & Williams, 2000;R. A. Barkley, 1997;R. A. Barkley, 2001),这种行为表现在行为上因为自我控制能力差,容易冲动。在执行功能的神经相关性以及 ADHD 和非 ADHD 成人和儿童群体的比较中存在相当大的重叠,包括前额皮质、前扣带回和纹状体区域(尾状核和壳核)。例如,对 ADHD 个体和对照之间大脑结构差异研究的荟萃分析显示,前额皮质、小脑、胼胝体压部和尾状核的体积和偏侧化存在显着差异(Casey 等,1997;Mostofsky,库珀、凯特、登基亚和考夫曼,2002 年瓦莱拉、法拉奥内; 默里和塞德曼,2007)。研究表明,右额叶皮层的损伤与工作记忆缺陷和反应抑制有关,这种结果模式在成人 ADHD 患者中也观察到(Clark 等,2007)。值得注意的是,多动症在男性中的发病率明显高于女性,最近对延迟满足研究的回顾表明,女性的情况明显好于男性(Silverman,2003)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM D HOPKINS其他文献

WILLIAM D HOPKINS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM D HOPKINS', 18)}}的其他基金

Genetic determinants of early brain development in an animal model of autism spectrum disorder (ASD)
自闭症谱系障碍(ASD)动物模型早期大脑发育的遗传决定因素
  • 批准号:
    10376837
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
  • 项目类别:
A Squirrel Monkey Model of Alzheimer’s Disease: Developing Behavioral, Blood, and CSF Biomarkers
阿尔茨海默病的松鼠猴模型:开发行为、血液和脑脊液生物标志物
  • 批准号:
    10284696
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
  • 项目类别:
Alzheimer's Disease Pathology in a Primate Model
灵长类动物模型中的阿尔茨海默病病理学
  • 批准号:
    10551282
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
  • 项目类别:
Genetic determinants of early brain development in an animal model of autism spectrum disorder (ASD)
自闭症谱系障碍(ASD)动物模型早期大脑发育的遗传决定因素
  • 批准号:
    10215682
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
  • 项目类别:
Alzheimer's Disease Pathology in a Primate Model
灵长类动物模型中的阿尔茨海默病病理学
  • 批准号:
    10350661
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
  • 项目类别:
Specific Pathogen Free 18 Baboon Research Resource (SPF18BRR)
无特定病原体 18 狒狒研究资源 (SPF18BRR)
  • 批准号:
    10627136
  • 财政年份:
    2017
  • 资助金额:
    $ 11.16万
  • 项目类别:
Specific Pathogen Free 18 Baboon Research Resource (SPF18BRR)
无特定病原体 18 狒狒研究资源 (SPF18BRR)
  • 批准号:
    10912917
  • 财政年份:
    2017
  • 资助金额:
    $ 11.16万
  • 项目类别:
HEMISPHERIC SPECIALIZATION AND COMMUNICATION
半球专业化和沟通
  • 批准号:
    8357394
  • 财政年份:
    2011
  • 资助金额:
    $ 11.16万
  • 项目类别:
Vasopressin Receptor Polymorphism and Social Cognition
加压素受体多态性与社会认知
  • 批准号:
    8471263
  • 财政年份:
    2011
  • 资助金额:
    $ 11.16万
  • 项目类别:
Vasopressin Receptor Polymorphism and Social Cognition
加压素受体多态性与社会认知
  • 批准号:
    8517818
  • 财政年份:
    2011
  • 资助金额:
    $ 11.16万
  • 项目类别:

相似国自然基金

单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
  • 批准号:
    82303926
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
  • 批准号:
    10825849
  • 财政年份:
    2024
  • 资助金额:
    $ 11.16万
  • 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
  • 批准号:
    10734258
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
Digital monitoring of autonomic activity to detect empathy loss in behavioral variant frontotemporal dementia
对自主活动进行数字监测以检测行为变异型额颞叶痴呆的同理心丧失
  • 批准号:
    10722938
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
  • 批准号:
    10587615
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
Elucidating signaling networks in Anterior Segment development, repair and diseases
阐明眼前节发育、修复和疾病中的信号网络
  • 批准号:
    10718122
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了