Neuroanatomical Correlated of Cognitive Control

认知控制的神经解剖学相关性

基本信息

  • 批准号:
    7813297
  • 负责人:
  • 金额:
    $ 11.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-12-01 至 2014-11-30
  • 项目状态:
    已结题

项目摘要

The human brain is roughly three times larger than it should be for a species of our body weight. In addition, the evolution of the brain has not been uniform, with distinct cortical and sub-cortical regions being selected for in different species among mammals, and specifically within primates (T. W. Deacon, 1997; Finlay & Darlington, 1995; J. K. Rilling, 2006; Semendeferi & Damasio, 2000). For example, in primates, some have suggested there has been differential expansion of the frontal and temporal lobes relative to the other lobes and that these changes might reflect specific selection for cortical development in brain regions associated with complex cognition, including language (T. Deacon, 2004; J. K. Rilling & Seligman, 2002; Semendeferi, Armstrong, Schleicher, Zilles, & Van Hoesen, 2001; Semendeferi, Lu, Schenker, & Damasio, 2002). One of the main challenges in the field of neuroscience is to understand the development and evolution of the brain in relation to emergent behavioral and cognitive processes that define the human species relative to other primates. Related to this challenge is the quest to understand the role of genetic and non-genetic factors on the development and evolution of the brain in relation to specific behaviors of interest. The main focus of the proposed studies is to begin to address the relationship between the evolution of executive functions, broadly defined, in primates in the context of individual and phylogenetic changes in the brain, notably the prefrontal cortex and associated striatal and limbic system structures. The term "executive function" or "cognitive control" in human cognitive neuroscience reflects the ability to exert meta-control or decision making processes over a number of motivational, emotional and attentional systems. The notion of cognitive control implies that there are top-down systems that exert inhibitory control over more biologically driven motivational or emotional states. This top-down system underlies the ability to shut down or inhibit impulsive behaviors or provide for the ability to foresee reward in the future at the expense of immediate gains (sometimes referred to as delayed gratification) (E. K. Miller, 2000; E. K Miller, 2000), abilities some have suggested are highly advanced and possibly uniquely human (Roberts, 2002). One heuristic conceptualization of this system has been referred to as the "hot-cool" system of delayed gratification (Metcalfe & Mischel, 1999). In this model, there is the hot "emotional go system" and the cool "know" system characterized as emotionally neutral, contemplative and the seat of self regulation and selfcontrol. Accordingly, during hominin (and possibly hominoid) evolution, presumably there has been greater selection for cognitive control (the cool system) over the "hot" emotional, impulsive system. From a motivational and emotional standpoint, many have suggested that the prefrontal cortex, anterior cingulate and regions within the striatum (notably the caudate) play very important roles in the ability to exert self-control, or to suppress specific kinds of behavioral processes in the presence of pre-potent stimuli that exert strong stimulus control over the subjects' behavior. For example, in humans, there are significant developmental changes in delayed gratification that correspond to increasing maturation and connectivity in the prefrontal cortex, parietal lobe and striatum (Bunge & Wright, 2007; Casey, Getz, & Galvan, 2008). Clinical studies further support the role of prefrontal cortex in cognitive or executive control. Individuals with lesions in prefrontal cortex and associated limbic system and striatum structures have been described as stimulus bound; that is, their behavior is captured by immediate prepotent stimuli that reflexively elicit strong reactions and they are unable to override these impulsive behaviors and engage in behaviors that result in reward at later points in time (Bechara, Tranel, & Damasio, 2000; E. K Miller, 2000; Sax et al., 1999). Arguably, one of the most pronounced clinical manifestations of disrupted executive functions are patients diagnosed as attention-deficit hyperactivity disorder (ADHD). Though executive functions are broadly defined in the human neuropsychological literature, many have argued that the central behavioral problem of most ADHD individuals is a breakdown in behavioral inhibition (Baird, Stevenson, & Williams, 2000; R. A. Barkley, 1997; R. A. Barkley, 2001) that expresses itself behaviorally as poor self-control and impulsivity. There is considerable overlap in the neural correlates of executive function and in the comparison of ADHD and non-ADHD adult and child populations including prefrontal cortex, anterior cingulate and region of the striatum (caudate and putamen). For instance, meta-analyses of studies of structural brain differences between ADHD individuals and controls have revealed significant differences in the volume and lateralization of the prefrontal cortex, cerebellum, splenium of the corpus callosum and caudate (Casey et al., 1997; Mostofsky, Cooper, Kates, Denckia, & Kaufmann, 2002; Valera, Faraone, Murray, & Seidman, 2007). It has been shown that damage to the right frontal cortex is associated with deficits in working memory as well as response inhibition, a pattern of results similarly observed in adults with ADHD (Clark et al., 2007). It is of note that ADHD is significantly more prevalent in males than females and a recent review of the studies on delay of gratification showed that women were significantly better than men (Silverman, 2003).
人的大脑大约比我们体重的物种要大三倍。在 此外,大脑的演变并不统一,在哺乳动物中,尤其是在灵长类中的不同物种中选择了独特的皮质和亚皮质区域(T. W. Deacon,1997; Finlay&Darl​​ington,1995; J. K. Rilling,2006; Semendeferi&Damasio,2000)。 For example, in primates, some have suggested there has been differential expansion of the frontal and temporal lobes relative to the other lobes and that these changes might reflect specific selection for cortical development in brain regions associated with complex cognition, including language (T. Deacon, 2004; J. K. Rilling & Seligman, 2002; Semendeferi, Armstrong, Schleicher, Zilles, & Van Hoesen, 2001; Semendeferi,Lu,Schenker和Damasio,2002年)。 神经科学领域的主要挑战之一是了解发展和 大脑与新出现的行为和认知过程有关,这些行为和认知过程相对于其他灵长类动物而定义人类物种。与这一挑战相关的是,寻求了解遗传和非遗传因素在大脑发展和演变中与特定感兴趣的行为有关的作用。拟议研究的主要重点是开始解决在大脑中个体和系统发育变化的背景下,在灵长类动物中的执行功能的演变之间的关系,尤其是前额叶皮层以及相关的纹状体和边缘系统结构。人类认知神经科学中的“执行功能”或“认知控制”一词反映了在许多动机,情感和注意力系统上发挥元控制或决策过程的能力。认知控制的概念表明,有一些自上而下的系统对更生物学驱动的动机或情感状态施加抑制性控制。这种自上而下的系统是关闭或抑制冲动行为或提供未来预测奖励的能力的基础(有时被称为延迟的满足)(E. K. Miller,2000; E. K Miller,2000; E. K Miller,2000),有些能力有些能力是高级先进的,可能是非常高级的,并且可能是独特的人类(Roberts,2002年)。 该系统的一种启发式概念化被称为延迟满足的“热 - 酷”系统(Metcalfe&Mischel,1999)。在此模型中,有一个热的“情感GO系统”,而酷”系统的特征是情感中立,沉思和自我调节和自我控制的所在地。 因此,在人类(可能是类型)进化期间,大概有更大的 在“热”情绪,冲动系统上选择认知控制(酷系统)。 从动机和情感上的角度来看,许多人提出,纹状体内的前额叶皮层,前扣带回和区域(尤其是尾状)在发挥自我控制的能力中起着非常重要的作用,或者抑制特定类型的行为过程,以使主体刺激强大的刺激性控制主题的行为。例如,在人类中,延迟满足的发育变化发生了重大变化,与前额叶皮层,顶叶和纹状体的成熟和连通性的增加相对应(Bunge&Wright,2007; Casey,Getz,&Galvan,2008)。 临床研究进一步支持前额叶皮层在认知或执行控制中的作用。在额叶皮层和相关边缘系统和纹状体结构中患有病变的个体已被描述为刺激结合。也就是说,他们的行为是由立即产生强烈反应的直接能力刺激来捕获的,他们无法超越这些冲动的行为,并从事以后的时间奖励的行为(Bechara,Tranel和Damasio,&Damasio,2000; E. K Miller,2000; Sax等,1999)。 可以说,干扰行政职能的最明显的临床表现之一是 被诊断为注意力缺陷多动障碍(ADHD)的患者。尽管执行职能是 许多人认为,大多数ADHD个体的主要行为问题是行为抑制的崩溃(Baird,Stevenson,&Williams,2000; R. A. Barkley,1997; R. A. Barkley,2001)在行为抑制中的崩溃,在行为抑制中的主要行为问题是贫穷的自我控制和兴奋。执行功能的神经相关性以及ADHD和非ADHD成人和儿童种群的比较,包括前额叶皮层,纹状体前扣带回和区域(期权和p.udate和putamen),存在相当大的重叠。例如,ADHD个体和对照组之间结构性大脑差异的研究的荟萃分析显示,前额叶皮层的体积和侧向化存在显着差异,小脑,小脑,call体和尾状脾脏(Casey等,1997,1997; Mostofsky,Cooper,Kates,Kates,kates,kates,denckia,far&kaufmann,fare valera,fare vale calne&ka aufmann ,,&kaufmann ,,&kaufmann,fal ,, 2002; Murray和Seidman,2007年)。已经表明,对右额叶皮层的损害与工作记忆的缺陷以及响应抑制有关,这种结果在患有ADHD的成年人中也类似地观察到(Clark等,2007)。值得注意的是,ADHD在男性中比女性的普遍存在,最近对满足延迟的研究表明,女性明显好于男性(Silverman,2003年)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

WILLIAM D HOPKINS的其他基金

Genetic determinants of early brain development in an animal model of autism spectrum disorder (ASD)
自闭症谱系障碍(ASD)动物模型早期大脑发育的遗传决定因素
  • 批准号:
    10376837
    10376837
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
A Squirrel Monkey Model of Alzheimer’s Disease: Developing Behavioral, Blood, and CSF Biomarkers
阿尔茨海默病的松鼠猴模型:开发行为、血液和脑脊液生物标志物
  • 批准号:
    10284696
    10284696
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
Alzheimer's Disease Pathology in a Primate Model
灵长类动物模型中的阿尔茨海默病病理学
  • 批准号:
    10551282
    10551282
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
Genetic determinants of early brain development in an animal model of autism spectrum disorder (ASD)
自闭症谱系障碍(ASD)动物模型早期大脑发育的遗传决定因素
  • 批准号:
    10215682
    10215682
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
Alzheimer's Disease Pathology in a Primate Model
灵长类动物模型中的阿尔茨海默病病理学
  • 批准号:
    10350661
    10350661
  • 财政年份:
    2021
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
Specific Pathogen Free 18 Baboon Research Resource (SPF18BRR)
无特定病原体 18 狒狒研究资源 (SPF18BRR)
  • 批准号:
    10627136
    10627136
  • 财政年份:
    2017
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
Specific Pathogen Free 18 Baboon Research Resource (SPF18BRR)
无特定病原体 18 狒狒研究资源 (SPF18BRR)
  • 批准号:
    10912917
    10912917
  • 财政年份:
    2017
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
HEMISPHERIC SPECIALIZATION AND COMMUNICATION
半球专业化和沟通
  • 批准号:
    8357394
    8357394
  • 财政年份:
    2011
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
Vasopressin Receptor Polymorphism and Social Cognition
加压素受体多态性与社会认知
  • 批准号:
    8471263
    8471263
  • 财政年份:
    2011
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
Vasopressin Receptor Polymorphism and Social Cognition
加压素受体多态性与社会认知
  • 批准号:
    8517818
    8517818
  • 财政年份:
    2011
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:

相似国自然基金

小分子诱导成熟肝细胞转化为CD24+肝前体样细胞的机制和应用研究
  • 批准号:
    31872823
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
促神经发生药物的筛选及机制研究
  • 批准号:
    31701184
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
讲普通话成人ANSD患者突触前、突触和突触后病变部位和病变程度研究
  • 批准号:
    81271072
  • 批准年份:
    2012
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
  • 批准号:
    31270885
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
  • 批准号:
    10825849
    10825849
  • 财政年份:
    2024
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
  • 批准号:
    10734258
    10734258
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
Digital monitoring of autonomic activity to detect empathy loss in behavioral variant frontotemporal dementia
对自主活动进行数字监测以检测行为变异型额颞叶痴呆的同理心丧失
  • 批准号:
    10722938
    10722938
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
  • 批准号:
    10587615
    10587615
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别:
Elucidating signaling networks in Anterior Segment development, repair and diseases
阐明眼前节发育、修复和疾病中的信号网络
  • 批准号:
    10718122
    10718122
  • 财政年份:
    2023
  • 资助金额:
    $ 11.16万
    $ 11.16万
  • 项目类别: