Self-Organized Tissue Microvasculature
自组织组织微脉管系统
基本信息
- 批准号:7614893
- 负责人:
- 金额:$ 4.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2011-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesAgricultureAlbuminsArchitectureBindingBiological AssayBiotinBlood VesselsCell SurvivalCell physiologyCellsCessation of lifeComplexCytochromesDevelopmentDevicesDrug Metabolic DetoxicationEncapsulatedEngineeringEthylene GlycolsExcisionGoalsHepatocyteHydrogelsImageImageryIn SituIn VitroLaboratoriesLiquid substanceLiverLiver FailureMedicalMembraneMetabolicMetabolismMethodologyMethodsMetricMicrofluidicsModelingMonitorNutrientOrganOrgan failureOxygenParticle SizePatternPerfusionPumpResearchRiversSamplingStreptavidinStructureSuspension substanceSuspensionsSystemTechniquesTestingThickTissue EngineeringTissue ModelTissuesTransplantationUnited StatesUreaVelocimetriesWaste Productsdesignenzyme activityethylene glycolimprovedmortalityoutcome forecastparticlephysical modelresearch studyself organizationsuccesstime usetrafficking
项目摘要
DESCRIPTION (provided by applicant): Mortality due to organ failure presents a significant medical challenge with liver failure alone responsible for over 35,000 deaths per year in the United States. Currently, the only therapy that offers any significantly improved prognosis is organ replacement, but because the demand for transplantable organs far exceeds supply, only the most severe cases are referred for transplant. While engineered tissues offer the promise to alleviate the suffering imposed by organ failure, they continue to lack key features that would make them a viable treatment option. In particular tissues require a developed vascular network to deliver nutrients and oxygen and to remove metabolic waste products. This is particularly important in highly metabolic and complex tissues like the liver. The problem of vascularizing tissue constructs has been addressed using a variety of approaches, but to date those approaches have seen limited success due primarily to lack of scalability. Self-organization, where basic building blocks are built autonomously into larger structures, has been successfully employed in a variety of engineering applications. We propose that the same physical principles of self-organization that govern the development of river tributaries can be utilized to construct an efficient microvascular network in an adhesive particle suspension. Using cell-laden hydrogel modules as the basic tissue building blocks, we propose to construct a perfusion system in which the macroscopic system parameters can be tuned to create a vascular network that efficiently delivers nutrients to cells throughout the tissue to maintain long-term tissue function and viability. The overall goal of this project is to develop an approach to vascularizing liver tissue in vitro, where the tissue can be designed a priori and built from the ground up using basic tissue building blocks. We hypothesize that physical models of erosion can be applied to suspensions of cell-laden hydrogels and that these models will allow us to optimize the organization of a vascular network that is capable of maintaining cell function and viability. In order to achieve this goal, we propose: (1) to study self-organization in an adhesive suspension of microscale hydrogels under flow and (2) to optimize self-organization of microscale hydrogels for developing a phenotypically functional in vitro liver model. The result will be a fully scalable technique for designing complex tissue architecture from the ground up.
描述(由申请人提供):由于器官衰竭而导致的死亡率提出了重大的医疗挑战,仅肝脏衰竭造成每年35,000多人死亡。当前,唯一提供任何明显改善预后的疗法是器官的替代品,但是由于对移植器官的需求远远超过了供应,因此只转介了移植最严重的病例。虽然工程组织提供了减轻器官破坏造成的痛苦的承诺,但它们仍然缺乏关键特征,这将使它们成为可行的治疗选择。特别是组织需要开发的血管网络来提供养分和氧气并去除代谢废物。这在高度代谢和复杂的组织(如肝脏)中尤为重要。血管化组织构建体的问题已经使用了多种方法解决,但是迄今为止,这些方法主要是由于缺乏可扩展性而取得的成功有限。在各种工程应用中,已成功地使用了自动建立基本的构建块的自组织。我们建议,可以利用控制河流支流发展的自我组织的物理原理来在粘合粒子悬浮液中构建有效的微血管网络。我们建议使用载有细胞的水凝胶模块作为基本组织构建块,我们建议构建一种灌注系统,可以调节宏观系统参数,以创建一个血管网络,该血管网络有效地为整个组织中的细胞提供营养,以维持长期的组织功能和稳定性。该项目的总体目标是开发一种体外血管肝组织的方法,在该方法中,可以使用基本的组织构建块从头开始设计组织。我们假设可以将侵蚀的物理模型应用于载有细胞水凝胶的悬浮液,这些模型将使我们能够优化能够维持细胞功能和生存能力的血管网络的组织。为了实现这一目标,我们建议:(1)在流动下的显微镜水凝胶的粘附悬浮液中研究自组织,以及(2)优化微观水凝胶的自组织,以开发表型在体外肝模型中。结果将是一种完全可扩展的技术,用于从头开始设计复杂的组织结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Kevin Wood其他文献
David Kevin Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Kevin Wood', 18)}}的其他基金
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10756268 - 财政年份:2017
- 资助金额:
$ 4.72万 - 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10673595 - 财政年份:2017
- 资助金额:
$ 4.72万 - 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10209656 - 财政年份:2017
- 资助金额:
$ 4.72万 - 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10382453 - 财政年份:2017
- 资助金额:
$ 4.72万 - 项目类别:
A microfluidic platform to study sickle blood rheology
研究镰状血液流变学的微流控平台
- 批准号:
9684422 - 财政年份:2017
- 资助金额:
$ 4.72万 - 项目类别:
Dissecting the origins of fetal hemoglobin modulation of sickle cell vaso-occlusion
剖析胎儿血红蛋白调节镰状细胞血管闭塞的起源
- 批准号:
9258476 - 财政年份:2016
- 资助金额:
$ 4.72万 - 项目类别:
Carcinoma Cell Hyaluronan as a Therapeutic Target in Metastasis
癌细胞透明质酸作为转移治疗靶点
- 批准号:
9250092 - 财政年份:2016
- 资助金额:
$ 4.72万 - 项目类别:
A microfluidic platform to study sickle blood rheology
研究镰状血液流变学的微流控平台
- 批准号:
9324460 - 财政年份:2016
- 资助金额:
$ 4.72万 - 项目类别:
Carcinoma Cell Hyaluronan as a Therapeutic Target in Metastasis
癌细胞透明质酸作为转移治疗靶点
- 批准号:
9100026 - 财政年份:2016
- 资助金额:
$ 4.72万 - 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别: