Carcinoma Cell Hyaluronan as a Therapeutic Target in Metastasis
癌细胞透明质酸作为转移治疗靶点
基本信息
- 批准号:9100026
- 负责人:
- 金额:$ 20.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAnimal ModelArchitectureBindingBiological AssayBiological ModelsBlood CirculationBlood VesselsBreast Cancer CellBreast CarcinomaBreast cancer metastasisCD44 AntigensCarcinomaCell AdhesionCell LineCell membraneCell surfaceCellsComplexCoupledCytoskeletonDataDevelopmentDistantEndothelial CellsEndotheliumEpigenetic ProcessEventExtracellular MatrixExtravasationFailureFrustrationGeneticGoalsGoldGrowthHumanHyaluronanHyaluronidaseImageIn VitroIndividualLeadLinkLipidsMalignant - descriptorMalignant Epithelial CellMalignant neoplasm of prostateMetastatic CarcinomaMetastatic breast cancerMicrofluidicsModelingMolecular WeightMonitorNeoplasm MetastasisNoiseOncogenicPathway interactionsPhenotypePhysiologicalPolymersPositioning AttributePrimary NeoplasmProcessReagentReceptor ActivationRoleSignal PathwaySignal TransductionSiteSolidSpeedStagingSystemTestingTimeTissuesUp-RegulationWorkbasecell motilitydesignin vitro Modelin vivometastatic processmigrationmouse modelneoplastic cellnew therapeutic targetnovelnovel therapeuticspreventpublic health relevancereceptorscreeningtargeted treatmenttherapeutic targettooltumortumor progression
项目摘要
DESCRIPTION (provided by applicant): Metastasis, which represents the major cause of frustration and failure in therapy, remains the least understood stage of cancer progression. One of the difficulties in studying later stages of metastasis is the lack of appropriate models of
the complex metastatic process. To overcome this challenge, we have developed a microfluidic system that recapitulates critical stages of metastasis while allowing for real time stimulation of
cell phenotype and real time imaging of the metastatic process. The microfluidic model recapitulates critical aspects of the ectopic site, including a vascular compartment with physiologic flow and functional endothelium and a solid ECM-rich tissue compartment. In this work, we will use this platform to elucidate the importance of HA-dependent mechanisms in tumor cells as drivers of metastasis and ultimately to develop the microfluidic model system as a screening tool for identifying novel anti-metastatic reagents. Our working hypothesis is that HA synthesis and pericellular coat formation by metastatic carcinoma cells confers a `stromal independent' phenotype to enhance metastasis formation. Mechanistically the prediction is that this facilitates survival in the circulation and promotes carcinoma cell adhesion to endothelial cells, subsequent extravasation, and invasion and growth within the parenchyma of tissues harboring metastatic lesions. Within this work, we will specifically: (1) optimize our microfluidic
platform to quantify the metastatic potential of breast cancer cells; (2) quantify the effects of altering HA synthesis by metastatic carcinoma cells on tumor cells arrest, extravasation and growth both in vitro and in vivo. While HA synthesis by carcinomas has been linked with malignant progression, we hypothesize that it is the formation of a pericellular rich matrix that positions plasma membrane receptors, organizes the cytoskeleton and functions to maintain survival. Preliminary data support this hypothesis and this will be further tested by limiting HA synthesis and artificially restoring the pericellular matrix, using lipid coupled HA that will intercalate into the plasma membrane. We will evaluate key oncogenic signaling and survival pathways in cells (both suspended and adherent) that have, or do not have, an endogenous or artificial HA rich pericellular matrix. The prediction is that cells with a pericellular HA matrix ill in fact maintain activated oncogenic pathways, independent of adhesion, that will be inhibited by preventing the formation of a pericellular HA rich matrix. Beyond this specific mechanism of metastasis, this model should help focus on critical events in metastasis and ultimately speed the discovery of new therapeutic targets to block rate limiting steps in this process.
描述(由申请人提供):转移是治疗受挫和失败的主要原因,它仍然是癌症进展中最不为人所知的阶段,研究转移的后期阶段的困难之一是缺乏适当的模型。
为了克服这一挑战,我们开发了一种微流体系统,可以重现转移的关键阶段,同时允许实时刺激
微流体模型概括了异位部位的细胞表型和实时成像,包括具有生理流动和功能性内皮的血管区室以及富含 ECM 的固体组织区室。阐明肿瘤细胞中 HA 依赖性机制作为转移驱动因素的重要性,并最终开发微流体模型系统作为识别新型抗转移试剂的筛选工具。假设转移性癌细胞的HA合成和细胞周膜形成赋予了“基质独立”表型以增强转移形成,从机制上预测这有利于循环中的存活并促进癌细胞粘附到内皮细胞、随后的外渗和侵袭。在这项工作中,我们将具体:(1)优化我们的微流体。
量化乳腺癌细胞转移潜力的平台;(2)量化转移性癌细胞改变HA合成对肿瘤细胞在体外和体内停滞、外渗和生长的影响,而癌症的HA合成与恶性有关。在进展过程中,我们发现细胞周丰富基质的形成可以定位质膜受体、组织细胞骨架和维持生存的功能,初步数据支持这一假设,并将通过限制 HA 合成和进一步验证这一点。使用嵌入质膜的脂质偶联 HA 人工恢复细胞周基质,我们将评估具有或不具有富含内源性或人工 HA 的细胞周的关键致癌信号传导和存活途径。预测是,具有细胞周 HA 基质的细胞实际上会维持激活的致癌途径,而与粘附无关,除了这种特定的细胞周 HA 基质之外,该途径将受到抑制。转移机制,该模型应有助于关注转移中的关键事件,并最终加速新治疗靶点的发现,以阻止该过程中的速率限制步骤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Kevin Wood其他文献
David Kevin Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Kevin Wood', 18)}}的其他基金
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10756268 - 财政年份:2017
- 资助金额:
$ 20.03万 - 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10673595 - 财政年份:2017
- 资助金额:
$ 20.03万 - 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10209656 - 财政年份:2017
- 资助金额:
$ 20.03万 - 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10382453 - 财政年份:2017
- 资助金额:
$ 20.03万 - 项目类别:
A microfluidic platform to study sickle blood rheology
研究镰状血液流变学的微流控平台
- 批准号:
9684422 - 财政年份:2017
- 资助金额:
$ 20.03万 - 项目类别:
Dissecting the origins of fetal hemoglobin modulation of sickle cell vaso-occlusion
剖析胎儿血红蛋白调节镰状细胞血管闭塞的起源
- 批准号:
9258476 - 财政年份:2016
- 资助金额:
$ 20.03万 - 项目类别:
Carcinoma Cell Hyaluronan as a Therapeutic Target in Metastasis
癌细胞透明质酸作为转移治疗靶点
- 批准号:
9250092 - 财政年份:2016
- 资助金额:
$ 20.03万 - 项目类别:
A microfluidic platform to study sickle blood rheology
研究镰状血液流变学的微流控平台
- 批准号:
9324460 - 财政年份:2016
- 资助金额:
$ 20.03万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular engineering of HA-based lubricants for articular cartilage
用于关节软骨的 HA 基润滑剂的分子工程
- 批准号:
10712721 - 财政年份:2023
- 资助金额:
$ 20.03万 - 项目类别:
Engineering Surface Coatings for Localized Delivery of Therapeutic Extracellular Vesicles
用于治疗性细胞外囊泡局部递送的工程表面涂层
- 批准号:
10719257 - 财政年份:2023
- 资助金额:
$ 20.03万 - 项目类别:
Engineering protease biomarkers to guide surgical therapy for vestibular schwannoma and Neurofibromatosis Type 2
工程蛋白酶生物标志物指导前庭神经鞘瘤和 2 型神经纤维瘤病的手术治疗
- 批准号:
10571125 - 财政年份:2023
- 资助金额:
$ 20.03万 - 项目类别:
Evaluation of extracellular matrix gel for adhesion prevention and tissue healing intendon surgery
细胞外基质凝胶预防粘连和组织愈合意向手术的评价
- 批准号:
10482261 - 财政年份:2022
- 资助金额:
$ 20.03万 - 项目类别:
OVERCOMING STROMAL BARRIERS TO THERAPEUTICS IN PANCREAS CANCER
克服胰腺癌治疗的间质障碍
- 批准号:
10682621 - 财政年份:2022
- 资助金额:
$ 20.03万 - 项目类别: