Latent variable analysis in cognitive aging and executive function
认知衰老和执行功能的潜变量分析
基本信息
- 批准号:7282965
- 负责人:
- 金额:$ 12.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgeAgingAlzheimer disease screeningAlzheimer&aposs DiseaseAnimalsAreaBehaviorBehavioralBehavioral SymptomsCaregiversCategoriesClinicalClinical ResearchClinical TrialsClinical Trials DesignCognitionCognitiveCognitive ScienceCognitive agingComplexConduct Clinical TrialsConsensusConsultationsDataDementiaDepthDiagnosisDigit structureDisease regressionElderlyElementsEquationGoalsGrantGray unit of radiation doseImpaired cognitionInterventionInterviewMeasurementMeasuresMentored Research Scientist Development AwardMentorsMethodsModelingNeuropsychologyOutcomePatientsPersonsProtocols documentationPsychometricsPublic HealthPurposeRegression AnalysisResearchResearch PersonnelResearch TrainingScreening procedureShort-Term MemorySiteStagingStandards of Weights and MeasuresStatistical ModelsStructureSymptomsTechniquesTestingTimeTrainingagedbasecareercognitive changecomputer based statistical methodsconceptdesignexecutive functionexperienceimprovedinstrumentinterestneuropsychologicalnormal agingprospectivesexskillsstatisticstheories
项目摘要
DESCRIPTION (provided by applicant): The symptom domains of greatest interest in Alzheimer's disease (AD), cognition, function, and behavior, are also associated with executive function (EF). But EF cannot be directly observed; these symptom domains and EF have unknown measurement error in their assessment, and unknown interrelationships. Precise assessment of each area is important for efficient clinical studies of AD interventions and for public health purposes like screening for AD and dementia. Unlike regression analysis, latent variable analysis (LVA) methods can increase precision by explicitly modeling measurement error, and can model constructs (like EF) that are not directly observable. Additional precision will be derived from determining whether EF contributes significant explanatory power to models of cognitive aging and AD. This K01 therefore has two specific aims. Aim 1: Model measurement error in instruments that are common in clinical trials for AD using a Bayesian Network to differentiate measurement error from true change for non-demented elderly, persons
with AD, and persons with incipient AD. Aim 2: Construct a statistical model of EF for persons with AD and cognitively normal elderly controls in order to: a. evaluate the latent factor structure in EF; and b. compare fits of latent variable models of EF. The best fitting model will address the hypothesis that EF contributes significant explanatory power for variance in cognitive, functional and behavioral symptoms and will suggest whether this is true for both normal elderly and persons with AD. These aims will contribute to precision and modeling of assessment in normal aging and AD; and to a better understanding of EF as an outcome in aging research and clinical studies of AD. The proposed K01 will develop deep and broad sets of skills in assessment and analysis, to be achieved with training in design and conduct of clinical trials, measurement theory, neuropsychology, and advanced statistical/LVA modeling. Mentoring from an experienced clinical trialist, Paul Aisen, MD, will be supplemented with expert consultation in these domains throughout the five year grant. The PI is a junior investigator in who wishes to extend her expertise in statistics to include LVA methods, and her background in cognitive science to include neuropsychological assessment and measurement. This K01 award will achieve these and so will move the PI closer to her long-term goal of becoming an independent researcher in cognitive aging and AD.
描述(由申请人提供):阿尔茨海默病(AD)、认知、功能和行为中最令人感兴趣的症状领域也与执行功能(EF)相关。但EF不能直接观察;这些症状域和 EF 在评估中存在未知的测量误差以及未知的相互关系。 每个领域的精确评估对于 AD 干预措施的有效临床研究以及 AD 和痴呆症筛查等公共卫生目的非常重要。与回归分析不同,潜变量分析 (LVA) 方法可以通过显式建模测量误差来提高精度,并且可以对不可直接观察的构造(如 EF)进行建模。通过确定 EF 是否对认知衰老和 AD 模型具有显着的解释力,将获得额外的精度。因此,这款 K01 有两个具体目标。目标 1:使用贝叶斯网络对 AD 临床试验中常见的仪器测量误差进行建模,以区分测量误差和非痴呆老年人的真实变化
AD 患者和早期 AD 患者。目标 2:为 AD 患者和认知正常的老年人对照构建 EF 统计模型,以便:评估 EF 中的潜在因子结构;和b。比较 EF 潜变量模型的拟合度。最佳拟合模型将解决这样的假设:EF 对认知、功能和行为症状的差异具有显着的解释力,并将表明这对于正常老年人和 AD 患者是否都成立。这些目标将有助于提高正常衰老和 AD 评估的精确度和建模;更好地理解 EF 作为衰老研究和 AD 临床研究的结果。拟议的 K01 将培养深入而广泛的评估和分析技能,通过临床试验设计和实施、测量理论、神经心理学和高级统计/LVA 建模方面的培训来实现。在五年资助期间,经验丰富的临床试验专家 Paul Aisen 医学博士的指导将得到这些领域专家咨询的补充。 PI 是一名初级研究员,她希望扩展她在统计学方面的专业知识,包括 LVA 方法,以及她在认知科学方面的背景,包括神经心理学评估和测量。 K01 奖项将实现这些目标,从而使 PI 更接近成为认知衰老和 AD 领域独立研究员的长期目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROCHELLE E TRACTENBERG其他文献
ROCHELLE E TRACTENBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROCHELLE E TRACTENBERG', 18)}}的其他基金
Latent variable analysis in cognitive aging executive
认知老化执行者的潜变量分析
- 批准号:
7142300 - 财政年份:2006
- 资助金额:
$ 12.61万 - 项目类别:
Latent variable analysis in cognitive aging and executive function
认知衰老和执行功能的潜变量分析
- 批准号:
7876698 - 财政年份:2006
- 资助金额:
$ 12.61万 - 项目类别:
Latent variable analysis in cognitive aging and executive function
认知衰老和执行功能的潜变量分析
- 批准号:
7646198 - 财政年份:2006
- 资助金额:
$ 12.61万 - 项目类别:
Latent variable analysis in cognitive aging and executive function
认知衰老和执行功能的潜变量分析
- 批准号:
7474527 - 财政年份:2006
- 资助金额:
$ 12.61万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
$ 12.61万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 12.61万 - 项目类别:
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 12.61万 - 项目类别:
The impact of bilingualism on cognitive reserve/resilience using socio-demographically and linguistically diverse populations
双语对社会人口和语言多样化人群的认知储备/弹性的影响
- 批准号:
10584245 - 财政年份:2023
- 资助金额:
$ 12.61万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 12.61万 - 项目类别: